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We present an updated version of a QCD coupling which fulfills various physically motivated
conditions: at high momenta it practically coincides with the perturbative QCD (pQCD) coupling;
at intermediate momenta it reproduces correctly the physics of the semihadronic tau decay; and
at very low momenta it is suppressed as suggested by large-volume lattice calculations. An earlier
presented analysis is updated here in the sense that the Adler function, in the regime |Q2| . 1 GeV2,
is evaluated by a renormalon-motivated resummation method. This Adler function is then used
here in the evaluation of the quantities related with the semihadronic (strangeless) τ -decay spectral
functions, including Borel-Laplace sum rules in the (V+A)-channel. The analysis is then extended to
the evaluation of the hadronic vacuum polarization contribution to the muon anomalous magnetic

moment, a
had(1)
µ , where we include in the Adler function the V-channel higher-twist OPE terms

which are regulated in the infrared (IR) by mass parameters which are expected to be . 1 GeV.

The correct value of a
had(1)
µ can be reproduced with the mentioned IR-regulating mass parameters

if the value of the condensate 〈O4〉V+A is positive (and thus the gluon condensate value is positive).
This restriction and the requirement of the acceptable quality of the fits to the various mentioned
sum rules then lead us to the restriction 0.1171 < αs(M

2
Z ; MS) < 0.1180.

Keywords: Perturbative QCD; Lattice QCD; QCD Phenomenology; Resummation

I. INTRODUCTION

In this work, we present an updated construction of a QCD coupling A(Q2) [the analog of the underlying pQCD
coupling a(Q2) ≡ αs(Q2)/π] which was developed in Ref. [1]. The construction is based on a specific parametrization
of the behaviour of the discontinuity (spectral) function ρA(σ) ≡ Im A(−σ− iε) in the low-σ regime (where deviations
from pQCD are expected) in tems of three Dirac-delta functions. The parameters of the model are determined by
a set of three groups of conditions: (I) at high momenta (|Q2| > 1 GeV2) the coupling A(Q2) practically coincides
with the underlying pQCD coupling a(Q2); (II) at intermediate momenta (|Q2| ∼ 1 GeV2) the coupling reproduces
the correct values of the semihadronic τ -lepton decay ratio rτ ≈ 0.20; (III) at very low momenta |Q2| < 1 GeV2)
the coupling is suppressed, A(Q2) ∼ Q2 when Q2 → 0, as suggested by a natural interpretation of the large-volume
lattice results. The obtained coupling A(Q2) turns out to have no Landau singularities, i.e., it has singularities only
along the negative semiaxis in the complex Q2-plane (we denote: q2 ≡ (q0)2 − ~q2 ≡ −Q2).1 In comparison with the
construction in Ref. [1], the leading-twist (i.e., D = 0) Adler function D(Q2)(D=0) is evaluated, at |Q2| . 1 GeV2,

with a renormalon-motivated resummation method of Ref. [41]2 which takes into account in an adequate manner
the main renormalon structure of D(Q2)(D=0) and the absence of Landau singularities of A(Q2). The Borel-Laplace
sum rules of the τ -lepton spectral function in the full (V+A) channel are also performed here to obtain the values of
the first condensates, as in Ref. [1], but D(Q2)(D=0) in these sum rules is evaluated with the mentioned renormalon-
motivated resummation. The obtained values of the D = 4, 6 condensates in the full (V+A) channel then enable us
to obtain the V-channel values of the corresponding condensates. This then permits us to construct an OPE for the
V-channel Alder function D(Q2)V, where the D = 4, 6 terms include the obtained consensates and are regulated in
the IR-regime (|Q2| < 1 GeV2) with regulator masses MD. The obtained D(Q2)V is then used for the evaluation

of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, a
had(1)
µ . The obtained

1 Various QCD couplings free of Landau singularities (holomorphic couplings) have been constructed in the literature. Well known
among them is the Minimal Analytic coupling [usually named: Analytic Perturbation Theory (APT)], cf. Refs. [2–4]; for reviews and
applications of APT cf. Refs. [5] and Refs. [6–9], respectively. For other forms of holomorphic couplings, cf. Refs. [7, 10–30]. Some of
them [12, 14, 22, 26, 29] fulfill the relation A(Q2) = 0 at Q2 = 0, i.e., the same relation that is fulfilled by the coupling A(Q2) considered
in this work. For reviews of a variety of holomorphic couplings, cf. Refs. [31, 32]. For some of such couplings, mathematical packages for
their evaluation also exist [33, 34]. Most of such holomorphic couplings are constructed with dispersive approach (as is the case also for
the coupling considered in this work). On the other hand, related dispersive approaches can be applied also directly to spacelike QCD
observables [14, 30, 35–40].

2 In Ref. [1], the basis of evaluation of D(Q2)(D=0) was the knowledge of the first four terms in the (truncated) perturbation expansion

of D(Q2)(D=0) and the absence of Landau singularities of A(Q2).
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value of a
had(1)
µ is heavily influenced by the behaviour of the coupling A(Q2) and D(Q2)(D=0) at very low momenta

|Q2| ∼ m2
µ (. 10−2 GeV2), and by the IR-regulating masses MD (D = 4, 6). So an interesting question arises in

this (A)QCD framework: does the condition of reproduction of the correct value of a
had(1)
µ give us positive squared

masses M2
D > 0; and if so, are the obtained values . 1 GeV2, i.e., typical nonperturbative QCD scales, as expected

physically? We point out that M2
D > 0 implies that the OPE terms with D > 0 (D = 4, 6) of D(Q2)V are free of

Landau singularities (and not just the D = 0 term).
In Sec. II we resume the construction of the considered QCD coupling A(Q2). In Sec. III we recapitulate the

renormalon-motivated resummation method and how it is applied to the leading-twist Adler function D(Q2)(D=0);
additional details are given in Appendix A. In Sec. IV we present the numerical results for the parameters of the
coupling A(Q2), for various QCD reference strength values αs(M

2
Z ; MS) and various values of D = 0 τ -lepton decay

ratio r
(D=0)
τ (r

(D=0)
τ ≈ 0.20). In Sec. V we present the analysis of the Borel-Laplace sum rules with the OPAL and

ALEPH data, and extract the values of the D = 4, 6 condsensates 〈OD〉V+A of the (V+A)-channel Adler function.
We also perform the rτ -consistency checks by using OPAL and ALEPH data. In Sec. VI we deduct from the obtained
values of 〈OD〉V+A the values of the V-channel condensates 〈OD〉V. Then we finally apply there all the obtained results

for the evaluation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, a
had(1)
µ ,

and extract the values of the IR-regulator squared masses M2
D (D = 4, 6). We also interpret all the results obtained

in this work. In Sec. VII we present a summary of the presented work.

II. CONSTRUCTION OF THE COUPLING A(Q2)

As mentioned, we will follow mainly Ref. [1] in the construction of the QCD coupling A(Q2), which is the analog of
the usual (underlying) pQCD coupling a(Q2) ≡ αs(Q

2)/π in the same renormalization scheme. The coupling A(Q2)
should be valid also for the low-momentum regime where the number of active flavours is taken to be Nf = 3.

The following dispersion integral form for the (underlying) pQCD coupling a(Q2) is obtained by application of the

Cauchy theorem to the integrand a(Q
′2)/(Q

′2 −Q2):

a(Q2) =
1

π

∫ ∞
σ=−Q2

br−η

dσρa(σ)

(σ +Q2)
(η → +0), (1)

where ρa(σ) ≡ Im a(Q
′2 = −σ − iε) is the discontinuity (spectral) function of a(Q

′2) along its cut. The integration

in Eq. (1) is applied along the entire cut of a(Q
′2) in the complex Q

′2-plane: −∞ < Q
′2 < Q2

br, where Q2
br > 0 is

the branching point. We note that 0 < Q
′2 < Q2

br is the Landau cut of the pQCD coupling a(Q
′2); usually we have

Q2
br ∼ 0.1-1 GeV2.
On the other hand, the coupling A(Q2) is defined by the analogous form of the dispersion integral

A(Q2) =
1

π

∫ ∞
σ=M2

thr

dσρA(σ)

(σ +Q2)
. (2)

The corresponding spectral function ρA(σ) ≡ Im A(Q2 = −σ−iε) is specified in the following way: In the high energy
regime ρA(σ) is considered to coincide with that of the underlying pQCD coupling (in the same renormalization
scheme)

ρA(σ) = ρa(σ) for σ ≥M2
0 . (3)

Here, M2
0 ∼ 1-10 GeV2 can be regarded as pQCD onset-scale. On the other hand, the branching (threshold) point

Q
′2 = −M2

thr of the cut of A(Q
′2) may be different from Q2

br; it is expected to be comparable to the light meson scales

∼ 0.01 GeV2, and a hope is that −M2
thr turns out to be negative in the construction of A(Q2) [if −M2

thr is negative,
then A(Q2) has no Landau singularities]. In the low-energy regime (σ < M2

0 ) the spectral function is unknown, it is
expected to differ from the pQCD expression ρa(σ) and would contain an IR-contribution

∆AIR(Q2) =
1

π

∫ M2
0

σ=M2
thr

dσρA(σ)

(σ +Q2)
, (4)

which is a priori unknown. We parametrize this quantity as a nearly-diagonal Padé [M − 1/M ](Q2),3 and we take

3 These approximants work very well [42] for spacelike QCD quantities D(Q2) such as current correlators.
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M = 3

∆AIR(Q2) =

∑2
n=1AnQ

2n∑3
n=1BnQ

2n
=

3∑
j=1

Fj
Q2 +M2

j

. (5)

Combining these terms, the considered coupling A(Q2) has the form

A(Q2) =

3∑
j=1

Fj
Q2 +M2

j

+
1

π

∫ ∞
σ=M2

0

dσρa(σ)

(σ +Q2)
, (6)

and the corresponding spectral function, in vew of Eqs. (2) and (6), can be written as

ρA(σ) = π

3∑
j=1

Fjδ(σ −M2
j ) + Θ(σ −M2

0 )ρa(σ). (7)

When we consider the underlying pQCD coupling a(Q2) as already chosen (determined), our ansatz for the new
coupling A(Q2) has seven parameters: (M2

j ,Fj) (j = 1, 2, 3) and the pQCD-onset scale M2
0 . It is expected that we

will have 0 < M2
1 < M2

2 < M2
3 < M2

0 .
Due to its construction, however, the coupling A(Q2) will differ from the underlying (Nf = 3) pQCD coupling

a(Q2) by nonperturbative (NP) contributions. The coupling will fulfill several physically-motivated conditions. Since
pQCD is known to give correct results for QCD quantities D(Q2) at large |Q2| > 1 GeV2, we will require that the
coupling A(Q2) agree to a large precision with the (underlying) pQCD coupling a(Q2) in that regime

A(Q2)− a(Q2) ∼

(
Λ2

QCD

Q2

)N
(|Q2| > 1 GeV2, N = 5). (8)

Here, Λ2
QCD ∼ 0.1 GeV2, and N is a (large) positive integer. The larger is N , the better is the agreement between A

and a at large |Q2| > 1 GeV2. We will take N = 5; it turns out that this choice represents a set of four conditions
(by default we would have: N = 1). We refer to Ref. [1] for more details on this aspect and for the explicit form of
these conditions.

Another condition comes from the requirement that the leading-twist (D = 0) part of the τ -lepton semihadronic

decay width gives the value (approximately) known by the experiments r
(D=0)
τ ≈ 0.20, where the theoretical expression

for this quantity is

r
(D=0)
τ,th =

1

2π

∫ +π

−π
dφ (1 + eiφ)3(1− eiφ) d(Q2 = m2

τe
iφ)(D=0) (≈ 0.20) . (9)

Here, d(Q2)(D=0) = D(Q2)(D=0)−1 is the massless Adler function whose perturbation expansion is d(D=0) = a+O(a2).

This condition can be regarded as originating from the intermediate (i.e., moderately low) momentum regime, |Q2| ∼
m2
τ ∼ 1 GeV2.
In addition to these hitherto five conditions, we impose two conditions coming from the deep infrared (IR) regime

|Q2| . 0.1 GeV2 and are motivated by the large-volume lattice calculations [43–46]: as a function of positive Q2 the
coupling A(Q2) has a maximum at

A(Q2) = Amax for Q2 ≈ 0.135 GeV2, (10)

and at Q2 → 0 it is suppressed by ∼ Q2 behaviour

A(Q2) ∼ Q2 for Q2 → 0. (11)

We recall that within QCD the running coupling a(Q2) can be generally related to the renormalization functions via

a(Q2) = a(Λ2)
Z

(Λ)
gl (Q2)Z

(Λ)
gh (Q2)2

Z
(Λ)
1 (Q2)2

(Λ2
QCD < |Q2| < Λ2), (12)

where Z1 is the dressing function of the gluon-ghost-ghost vertex, which in the Langau gauge is constant Z
(Λ)
1 (Q2) = 1

to all orders [47]. Therefore, within a lattice approach to QCD a QCD-lattice coupling can be defined [43–46]

Alatt(Q
2) ≡ Alatt(Λ

2)Z
(Λ)
gl (Q2)Z

(Λ)
gh (Q2)2 (0 < |Q2| < Λ2). (13)
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Within the mentioned large-volume lattice calculations [43–46],4 the Landau gauge dressing functions Z
(Λ)
gl (Q2) and

Z
(Λ)
gh (Q2)2 were calculated for low positive Q2 < 1 GeV2, in the lattice MiniMOM (MM) renormalization scheme

[49–51].5 It turns out that the product (13) has the property Eq. (11), and achieves the maximum as written in
Eq. (10) once the momenta in the lattice MM scheme are rescaled to the usual MS-like scale, Q2 = Q2

latt(Λ
2
MS
/ΛMM)2.

Stated otherwise, the conditions (10)-(11) mean that our constructed coupling A(Q2) qualitatively agrees with the
lattice coupling (13) in the (deep) IR regime Q2 < 1 GeV2. For further explanation of the relations (10)-(11) and
(12)-(13), we refer to Ref. [1].

The seven aforementioned requirements can be used to determine the seven parameters of the coupling A(Q2).
There is also an eighth, more hidden, parameter which determines the strength of the underlying pQCD coupling
a(Q2); in our approach, this strength parameter will be represented by the value of αs(M

2
Z ; MS) (at Nf = 5); the

recent world average [53] is αs(M
2
Z ; MS) = 0.1179 ± 0.0010. The underlying (Nf = 3) pQCD coupling a(Q2) is in

the same MM renormalization scheme in which the large-volume lattice calculations were performed [43–46], with the
3-loop and 4-loop beta coefficients βj (j = 2, 3) coinciding with the MM scheme coefficients [49] (cf. also [50, 51])6(

da(Q2)

d lnQ2
=

)
βMM(a) = −β0a

2 − β1a
3 − β2(MM)a4 − β3(MM)a5 +O(a5), (14)

where the first two coefficients β0 = 9/4 and β1 = 4 are universal, and β2(MM) = 20.9183 and β3(MM) = 160.771
(all for Nf = 3).7 We point out, however, that the renormalization scheme of the considered underlying coupling
a(Q2), and of our coupling A(Q2), has the squared momenta rescaled as earlier mentioned, from the lattice MM
scale to the usual MS-like scale: Q2 = Q2

latt.(ΛMS/ΛMM)2 [at Nf = 0 this means: Q2 ≈ Q2
latt./1.902].8 We call this

rescaled scheme the Lambert MiniMOM (LMM) scheme, and it differs from the MS scheme only due to the changed
βj coefficients (j ≥ 2). We recall that the construction of the coupling A(Q2) is based on the dispersion integral (6)
with the discontinuity (spectral) function ρA(σ) equal at large energy scales to the spectral function of the underlying
pQCD coupling ρa(σ), Eqs. (3) and (7). In practice, we need for an efficient evaluation of the dispersion integral

(6) an efficient and precise evaluation of the integrand function ρa(σ) ≡ Im a(Q
′2 = −σ − iε), i.e., of a(Q

′2) in the

complex Q
′2-plane and even close to the cut. This is obtained if we take for the pQCD β-function a specific form of

Padé which, on one hand, allows for an explicit solution of the RGE da/d lnQ2 = β(a) [54] and, on the other hand,
when expanded it agrees with the MM-β-function Eq. (14) up to the known terms ∼ a5

da(Q2)

d lnQ2
= β(a(Q2)) ≡ −β0a(Q2)2

[
1 + a0c1a(Q2) + a1c

2
1a(Q2)2

]
[1− a1c21a(Q2)2] [1 + (a0 − 1)c1a(Q2) + a1c21a(Q2)2]

, (15)

where cj ≡ βj/β0 and

a0 = 1 +
√
c3(MM)/c31, a1 = c2(MM)/c21 +

√
c3(MM)/c31. (16)

Here, cj(MM) ≡ βj(MM)/β0 (j = 2, 3) are taken in the MM scheme (with Nf = 3). It turns out that the expansion
of the β-function of the RGE (15) up to ∼ a(Q2)5 reproduces the four-loop polynomial MM-scheme β-function (14).
As shown in Ref. [54], the RGE (15) has explicit solution in terms of the Lambert functions W∓1(z)

a(Q2) =
2

c1

[
−
√
ω2 − 1−W∓1(z) +

√
(
√
ω2 + 1 +W∓1(z))2 − 4(ω1 +

√
ω2)

]−1

, (17)

where ω1 = c2(MM)/c21, ω2 = c3(MM)/c31, Q2 = |Q2| exp(iφ). The Lambert function W−1 is used when 0 ≤ φ < π,
and W+1 when −π ≤ φ < 0. The argument z = z(Q2) in W±1(z) is

z ≡ z(Q2) = − 1

c1e

(
Λ2
L

Q2

)β0/c1

, (18)

4 Somewhat different but qualitatively similar behaviour [Alatt(Q
2) → 0 when Q2 → 0] is obtained when defining a (lattice) coupling

which involves the lattice-calculated 3-gluon Green function [48].
5 Interestingly, it was shown in Ref. [52] that the β-function factorisation of the conformal symmetry breaking contribution to the

generalised Crewther relation is preserved in the MM scheme in the Landau gauge.
6 The MM scheme in pQCD sense is known up to 4-loop level.
7 For comparison, the (Nf = 3) MS values are β2(MS) = 10.0599 and β3(MS) = 47.2281.
8 The maximum value of Alatt(Q

2) in the MM scheme for Nf = 0 [43] and Nf = 2 [44] is at about Q2
latt ≈ 0.45 GeV2, and this then

corresponds in the MS-like rescaling (LMM) to Q2 ≈ 0.45/1.902 GeV2 ≈ 0.125 GeV2 and 0.45/1.852 GeV2 ≈ 0.131 GeV2, respectively.
In our construction of A(Q2), we have Nf = 3 and we take the maximum at Q2 = 0.135 GeV2, Eq. (10).
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where ΛL is a scale which we call the Lambert scale (ΛL ∼ ΛQCD).9 The form of Eq. (17) is very convenient for the

evaluation of a(Q2), and thus of ρa(σ) ≡ Im a(Q
′2 = −σ − iε), in Mathematica software which has the evaluation of

the Lambert functions W∓(z) implemented in a stable manner.
The Lambert scale ΛL can be fixed once we have chosen the reference value for the strength parameter αs(M

2
Z ; MS).

The algorithm relating the values of ΛL (at Nf = 3, in the LMM scheme) and αs(M
2
Z ; MS) (at Nf = 5, in the MS

scheme) is described in Ref. [1], and we refer to it for details. For example, the value of ΛL = 0.11100 GeV (in
LMM) corresponds to αs(M

2
Z ; MS) = 0.1177. We point out that we use in the present work for the RGE running

of pQCD coupling a(Q2; MS) in the MS scheme (from M2
Z down to Q2 ∼ 1 GeV2) everywhere the five-loop MS

β-function [55] and the corresponding four-loop quark threshold matching [56] at the scales Q2
thr = κm̄2

q with κ = 2,

and m̄q ≡ m̄q(m̄
2
q) equal to 4.2 GeV (q = b) and 1.27 GeV (q = c). In Ref. [1], the use of four-loop MS β-function

[57] with the corresponding three-loop quark threshold matching [56] was made (with κ = 2).10

III. RENORMALON-MOTIVATED RESUMMATION

The evaluation of the leading-twist (D = 0) contribution to rτ in AQCD is reduced to the evaluation of the leading-
twist (D = 0) contribution of the massless Adler function, d(Q2)(D=0), in AQCD along the contour |Q2| = m2

τ in the

Q2-complex plane, according to Eq. (9).11 The perturbation expansion of d(Q2)(D=0) is known up to ∼ a4 [59–61]12

d(Q2)
pt;[4]
(D=0) = a(Q2) +

3∑
n=1

dna(Q2)n+1 (19a)

= a(Q2) +

3∑
n=1

d̃nãn+1(Q2), (19b)

where in the last relation the power series was reorganized in terms of the logarithmic derivatives

ãn+1(Q2) ≡ (−1)n

n!βn0

(
d

d lnQ2

)n
a(Q2) (n = 1, 2, . . .). (20)

The connections between an+1 and ãn+1 are obtained via the RGE (14) (in a general scheme, not just in LMM), and
have the form

ãn+1 = an+1 +
∑
m≥1

km(n+ 1) an+1+m, (21a)

an+1 = ãn+1 +
∑
m≥1

k̃m(n+ 1) ãn+1+m, (21b)

with appropriate constants km(n + 1) and k̃m(n + 1). This leads to the relations of the following form between the

coefficients d̃n and the original coefficients dn:

d̃n = dn +

n−1∑
s=1

k̃(n+ 1− s) dn−s. (22)

9 In Ref. [54] for z the expression without the factor 1/(c1e) was used, which just redefines the Lambert scale ΛL. We point out that the
expression Eq. (17) can be used as an explicit solution for any chosen values of c2 and c3 [54], not just those of the MM scheme.

10 For this reason, for example, for αs(M2
Z ; MS) = 0.1181 the value of ΛL = 0.1136 GeV was obtained in [1], while here ΛL = 0.1130 GeV.

11 The Adler function d(Q2)(D=0) is the logarithmic derivative of the quark current correlator Π(D=0): d(Q2)(D=0) =

−2π2(d/d lnQ2)Π(Q2)(D=0) − 1.
12 In the MS scheme (with Nf = 3), the values of (d1, d2, d3) are: (1.63982, 6.37101, 49.0757). On the other hand, in the LMM scheme

(with Nf = 3), the corresponding values are significantly different: (1.63982, 1.54508, 8.01658).
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All the coefficients km(p) and k̃m(p) are independent of the (physical) scale Q2, but do depend on the scheme-
characterizing beta coefficients βj (j ≥ 2). Specifically,

d̃1 = d1, d̃2 = d2 −
(
β1

β0

)
d1, (23a)

d̃3 = d3 −
5

2

(
β1

β0

)
d2 +

[
−
(
β2

β0

)
+

5

2

(
β1

β0

)2
]
d1, (23b)

etc. In Ref. [1], we had evaluated the truncated series (19b) by the necessary AQCD replacements

a 7→ A, ãn+1 7→ Ãn+1 ≡
(−1)n

n!βn0

(
d

d lnQ2

)n
A(Q2) (n = 1, 2, . . .), (24)

leading to

d(Q2)
AQCD;[4]
(D=0) = A(Q2) +

3∑
n=1

d̃n Ãn+1(Q2). (25)

In the present work, however, we will extend the evaluation of the Adler function d(Q2)(D=0) to include a renormalon-

motivated estimate of the infinite sequence of the higher-order coefficients d̃n (↔ dn) with n = 4, 5, . . . as explained
in Ref. [41].13 In doing so, we are motivated by the observation that the precise connection between the (analytically
improved) coupling A and the experimental value for the (moderately-low-energy) quantity rτ is crucial for the optimal
construction of A. The resummed Adler function can be reexpressed in terms of integrals for d(Q2)(D=0) involving

the coupling a and the characteristic functions G
(±)
d and G

(SL)
d

d(Q2)pt;res
(D=0) =

∫ 1

0

dt

t
G

(−)
d (t)a(te−K̃Q2)+

∫ ∞
1

dt

t
G

(+)
d (t)a(te−K̃Q2)+

∫ 1

0

dt

t
G

(SL)
d (t)

[
a(te−K̃Q2)− a(e−K̃Q2)

]
, (26)

where, in the LMM scheme, the obtained characteristic functions have the form

G
(−)
d (t) = πt2

[
d̃IR

2,1 − d̃IR
3,2t ln t

]
, (27a)

G
(+)
d (t) =

π

t
d̃UV

1,2 ln t, (27b)

G
(SL)
d (t) = −α̃d̃IR

2,1

πt2

ln t
, (27c)

and the obtained numerical values of the rescaling parameter K̃ and of the residue-like parameters d̃i,j are (in LMM):

d̃IR
2,1 = −1.831, d̃IR

3,2 = 11.05, d̃UV
1,2 = 0.005885, α̃ = −0.14; K̃ = −0.7704. These parameters appear in the Borel-

Laplace transform B[d̃](u) of an auxiliary quantity d̃(Q2;µ2) related to the Adler function d(Q2)(D=0) (in the one-loop
approximation these two quantities would coincide). The resummed expression for the Adler function in the considered
AQCD framework is obtained from the expression (26) by the simply replacing the (underlying) pQCD coupling a
there by A

d(Q2)A;res
(D=0) =

∫ 1

0

dt

t
G

(−)
d (t)A(te−K̃Q2) +

∫ ∞
1

dt

t
G

(+)
d (t)A(te−K̃Q2) +

∫ 1

0

dt

t
G

(SL)
d (t)

[
A(te−K̃Q2)−A(e−K̃Q2)

]
,

(28)
We refer to Appendix A for the main steps in this construction, and to Ref. [41] for full details.

It turns out that the evaluation of the integrals in Eq. (26) for Q2 > 0 at t → 0, is ambiguous because the pQCD

coupling a(t exp(−K̃)Q2) has a cut-discontinuity at 0 < t exp(−K̃)Q2 < Q2
br (Landau singularities). However, since

the coupling A(Q
′2) in AQCD has no Landau singularities, the evaluation of the expression (28) is unambiguous even

for Q2 > 0.

13 For a review of renormalon physics cf. Ref. [62]; and for some other recent developments, cf. Refs. [63–66].
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IV. THE EXTRACTED PARAMETERS OF THE COUPLING A(Q2)

The seven requirements explained in Sec. II then give us the values of the seven parameters of the considered A-
coupling: Fj ,M2

j (j = 1, 2, 3) and M2
0 . This means that for any chosen values of the “strength” constant αs(M

2
Z ; MS)

(↔ Lambert scale ΛL) and of the τ -decay ratio r
(D=0)
τ (≈ 0.20), we are then able to obtain the values of the seven

parameters, which are written in the dimensionless form

fk ≡
Fk
Λ2
L

(k = 1, 2, 3), sj ≡
M2
j

Λ2
L

(j = 0, 1, 2, 3) . (29)

In practice, the five parameters sj (j = 2, 3) and fk (k = 1, 2, 3) are expressed as functions of the parameters s0 and

s1 via the five requirements (8) and (11). Then, for a given chosen value of αs(M
2
Z ; MS), the positive values of the

two parameters s0 and s1 (with s0 < s1 < s2 < s3) are varied so that the other two requirements [Eqs. (9) and (10)]

are met: (I) a chosen value value of r
(D=0)
τ (≈ 0.20) is achieved and, simultaneously, (II) the coupling A(Q2) achieves

for positive Q2 the maximum at Q2 = 0.135 GeV2.

When the chosen values of αs(M
2
Z ; MS) are higher and those of r

(D=0)
τ (≈ 0.20) are lower, it turns out that the

mentioned two requirements [(I) and (II)] can be met only in the limit s1 → s2−0. In such cases, the spectral function
ρA(σ) and the coupling A(Q2) then attain the following limiting form [cf. Eqs. (7) and (6)]:

1

π
ρA(σ) =

2∑
j=1

Fjδ(σ −M2
j ) + F (1)

1 δ′(σ −M2
1 ) + F (2)

1 δ′′(σ −M2
1 ) +

1

π
Θ(σ −M2

0 )ρa(σ), (30a)

A(Q2) =

2∑
j=1

Fj
(Q2 +M2

j )
+

F (1)
1

(Q2 +M2
j )2

+
2F (2)

j

(Q2 +M2
j )3

+
1

π

∫ ∞
σ=M2

0

dσρa(σ)

(σ +Q2)
, (30b)

where the primes at the Dirac-delta functions denote derivatives. In this case, the new dimensionless parameters are

f
(1)
1 =

F (1)
1

Λ4
L

, f
(2)
1 =

F (2)
1

Λ6
L

. (31)

Effectively, we can always regard the chosen values of αs(M
2
Z ; MS) and r

(D=0)
τ as the input parameters which then

determine the A-coupling. In Table I we present solutions for various chosen values of these input parameters

αs(M
2
Z ; MS) and r

(D=0)
τ . The range of the values αs(M

2
Z ; MS) is the interval of the recent world average values

αs(M
2
Z ;Nf = 5; MS) = 0.1179 ± 0.0010 [53]. In all the displayed cases, we can arrive from one of them to another

adjacent case by continuous variation of the input parameter values of αs(M
2
Z ; MS) and r

(D=0)
τ,th . Later in the analysis

it will become clear why we displayed, at a given value of αs(M
2
Z ; MS), the specific values or (narrow) ranges of

values of r
(D=0)
τ as given in Table I. For αs(M

2
Z ; MS) ≤ 0.1180, the displayed cases always include the one with the

largest possible value of r
(D=0)
τ,th (with the precision of 0.001) within our (3δ AQCD) approach of the construction

of A-coupling. For example, when αs(M
2
Z ; MS) = 0.1179, the value r

(D=0)
τ,th = 0.202 can be achieved, but not the

value r
(D=0)
τ,th = 0.203; when αs(M

2
Z ; MS) = 0.1172, the value r

(D=0)
τ,th = 0.195 can be achieved, but not the value

r
(D=0)
τ,th = 0.196. Only in the case of αs(M

2
Z ; MS) = 0.1175 we increased the value of r

(D=0)
τ,th to its maximal value with

the precision of 0.0001, i.e., r
(D=0)
τ,th = 0.1988 can be achieved but not r

(D=0)
τ,th = 0.1989. We recall that in all these

adjustments, we required that the coupling A(Q2) at positive Q2 achieve its maximum at Q2 = 0.1350 GeV2 (as
suggested by the aforementioned lattice calculations).

The numerical implementation of the couplings of Table I is available in the Mathematica code from the web page
www.gcvetic.usm.cl.14

14 E.g., the case with the input parameters αs(M2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200 is in the program 3dAQCDrt0200al01177N.m;

and the other cases are in the programs with analogous names there. The programs also contain information on how to use them in
Mathematica software.
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TABLE I: The dimensionless parameters of the coupling A(Q2): sj ≡ M2
j /Λ

2
L (j = 0, 1, 2, 3); fj ≡ Fj/Λ2

L (j = 1, 2, 3)

[cf. Eqs. (29) and (6)] for various chosen values of αs(M
2
Z ; MS) (↔ ΛL) and r

(D=0)
τ,th . Included is also the value of πA(Q2) at

the local maximum (for positive Q2) Q2 = 0.1350 GeV2. At higher values of αs(M
2
Z ; MS) or lower values of r

(D=0)
τ , the values

of the alternative needed parametrization Eq. (31) [cf. Eq. (30b)] are given.

αs(M
2
Z) [ΛL (GeV)] r

(D=0)
τ,th s0 s1 s2 s3 f1 f2 f3 πAmax

0.1184 [0.114517] 0.203 642.399 4.63154 16.5725 466.910 -3.97366 12.8485 5.20916 0.92452
0.1181 [0.113003] 0.201 673.556 3.71461 21.3864 490.509 -2.27773 11.3625 5.35749 0.87219
0.1181 [0.113003] 0.203 755.931 2.29898 33.3151 552.949 -0.911199 10.5375 5.74122 0.78240
0.1180 [0.112500] 0.202 755.040 2.35204 33.1302 552.268 -0.937899 10.5583 5.73732 0.78157
0.1180 [0.112500] 0.203 829.491 1.7491 43.3075 608.703 -0.568146 10.6616 6.07637 0.722972
0.1179 [0.111999] 0.201 753.964 2.40862 32.9178 551.446 -0.967082 10.5803 5.73256 0.78090
0.1179 [0.111999] 0.202 823.902 1.81634 42.5024 604.46 -0.598431 10.6567 6.05134 0.72555
0.1178 [0.111500] 0.200 752.710 2.46899 32.6783 550.489 -0.998984 10.6039 5.72699 0.78037
0.1178 [0.111500] 0.201 818.918. 1.88306 41.7757 600.676 -0.628746 10.6555 6.02901 0.72772
0.1177 [0.111001] 0.199 751.287 2.53325 32.4130 549.404 -1.03377 10.6293 5.72064 0.77997
0.1177 [0.111001] 0.200 814.291 1.95043 41.0942 597.163 -0.659738 10.6572 6.00827 0.72964
0.1176 [0.110504] 0.199 809.917 2.01909 40.4438 593.841 -0.691761 10.6615 5.98866 0.73140
0.1175 [0.110008] 0.197 747.883 2.6754 31.7959 546.811 -1.11385 10.6869 5.70537 0.77963
0.1175 [0.110008] 0.198 805.718 2.08956 39.8139 590.652 -0.725134 10.6682 5.96983 0.73303
0.1175 [0.110008] 0.1988 910.653 1.48732 54.005 670.205 -0.418181 11.0113 6.43904 0.66892
0.1174 [0.109513] 0.197 801.637 2.1623 39.1966 587.552 -0.760166 10.6772 5.95151 0.73457
0.1173 [0.109019] 0.196 797.636 2.23771 38.5866 584.513 -0.797146 10.6886 5.93354 0.73605
0.1173 [0.109019] 0.197 904.897 1.5672 53.1420 665.829 -0.445743 11.0034 6.41399 0.66981
0.1172 [0.108527] 0.195 793.679 2.31620 37.9789 581.506 -0.836399 10.7025 5.91576 0.73750
0.1172 [0.108527] 0.196 883.815 1.69725 50.2540 649.839 -0.501017 10.9297 6.32083 0.68000
0.1171 [0.108036] 0.195 870.166 1.80233 48.359 639.485 -0.54636 10.8909 6.26031 0.68650
0.1170 [0.107546] 0.194 859.428 1.89941 46.8507 631.337 -0.588937 10.8669 6.2126 0.69151
0.1169 [0.107058] 0.193 850.281 1.99365 45.5518 624.396 -0.631008 10.8520 6.17189 0.69570

αs(M
2
Z) [ΛL (GeV)] r

(D=0)
τ,th s0 s1 s2 f1 f

(1)
1 f

(2)
1 f2 πAmax

0.1181 [0.113003] 0.199 614.709 10.1622 445.893 8.68391 -71.7103 -127.796 5.07754 0.96237
0.1184 [0.114517] 0.201 587.16 11.6459 424.893 8.48770 -27.1570 -483.952 4.94869 1.01338
0.1184 [0.114517] 0.199 523.647 13.4469 375.641 7.98996 62.3606 -1246.69 4.67979 1.08931
0.1189 [0.117067] 0.201 434.498 14.2200 304.382 7.15111 174.204 -2092.06 4.39556 1.21831

For the choice of the input parameters αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200, the mass parameters M2

j = sjΛ
2
L

and the residue parameters Fj = fjΛ
2
L are15

M2
0 = 10.033 GeV2 (M0 ≈ 3.167 GeV); (32a)

M2
1 = 0.0240 GeV2 (M1 ≈ 0.155 GeV), F1 = −0.00813 GeV2, (32b)

M2
2 = 0.506 GeV2 (M2 ≈ 0.712 GeV), F2 = 0.1313 GeV2, (32c)

M2
3 = 7.358 GeV2 (M3 ≈ 2.713 GeV), F3 = 0.0740 GeV2. (32d)

In Figs. 1 and 2 we present the spectral function ρA(σ) and the coupling πA(Q2) (for Q2 > 0), respectively, for the

choice αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200. In Fig. 1(a) the spectral function ρa(σ) of the underlying pQCD

coupling a is presented (for σ > 0 and σ < 0), while in Fig. 1(b) the resulting ρA(σ) is presented (σ > 0). In Fig. 2 we
include, for comparison, the underlying pQCD coupling πa(Q2) (i.e., in the LMM scheme) and the pQCD coupling
in the MS scheme. We further include in Fig. 2 the resulting lattice coupling πAlatt(Q

2) at Nf = 0 [43], where we
rescaled Q2 from the MM scheme of Ref. [43] to the LMM scheme, cf. discussion in Sec. II. At Q2 → 0 the coupling
A(Q2) behaves as kQ2, with k ≈ 13.6 GeV2, agreeing qualitatively with the lattice coupling Alatt(Q

2). The couplings
A and Alatt both achieve the local maximum (for positive Q2) at Q2 = 0.135 GeV2. The maximal value of A(Q2)
is lower than that of Alatt(Q

2); however, the height of the maximum depends significantly on the chosen reference

15 If, for the parameters of Eqs. (32), we evaluated r
(D=0)
τ,th Eq. (9) with the Adler function taken as the truncated series Eq. (25) (as in

Ref. [1]), instead of the renormalon-motivated resummation Eq. (28), we would obtain r
(D=0)
τ,th = 0.1988 (instead of r

(D=0)
τ,th = 0.2000).
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FIG. 1: (a) The pQCD spectral function ρa(σ) = Im a(Q2 = −σ − iε) in the 4-loop LMM scheme (σ is on linear scale); (b) ρA(σ) =
Im A(Q2 = −σ − iε) (where: σ > 0 is on logarithmic scale). The delta function at M2

1 is in fact negative, but is shown as positive for
convenience.
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FIG. 2: The considered Nf = 3 coupling πA (solid curve), at positive Q2. For comparison, the underlying LMM pQCD coupling πa

(dot-dashed curve) and MS pQCD coupling πaMS (dotted curve) are included. Further, the large-volume lattice results πAlatt [43] are
shown (points with bars); for them, the momenta Q2 were rescaled from the lattice MM to the LMM scheme: Q2 = Q2

latt(ΛMS/ΛMM)2 ≈
Q2

latt/1.9
2. The branching points of the Landau cuts for a and aMS are Q2

br = 1.228 GeV2 and 0.393 GeV2, respectively; a is finite at its
branching point.

value αs(M
2
Z ; MS) in our approach and in the lattice calculations. Further, we note that at large Q2 > 1GeV2, the

large-volume lattice results are unreliable [67].
In Fig. 3 we show the behaviour of the Adler function d(Q2)(D=0) for positive Q2, when it is evaluated with the

A-coupling with the renormalon-motivated resummation Eq. (28) and with the truncated series Eq. (25), both for
the A-coupling with the parameter values Eqs. (32) and αs(M

2
Z ; MS) = 0.1177 (i.e., ΛL = 0.1110 GeV).

We include in the Figure the renormalon-motivated resummation using the underlying pQCD coupling a(Q2),
cf. Eq. (26), and fixing the ambiguity from the mentioned Landau cut by taking the principal value (PV)

d(Q2; PV)pt;res
(D=0) = Re

{∫ 1

0

dt

t
G

(−)
d (t)a(te−K̃Q2 + iε) +

∫ ∞
1

dt

t
G

(+)
d (t)a(te−K̃Q2 + iε)

+

∫ 1

0

dt

t
G

(SL)
d (t)

[
a(te−K̃Q2 + iε)− a(e−K̃Q2 + iε)

]}
(Q2 > 0, ε→ +0). (33)

The grey band around the central pQCD curve illustrates the uncertainty (ambiguity) δd of this pQCD result, where
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3δ QCD; res

3δ QCD; [4]

pQCD; res(LMM RSch)
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FIG. 3: The Adler function d(Q2)(D=0) as a function of Q ≡
√
Q2 for positive Q2, in the considered 3δ AQCD: evaluated as the

resummation Eq. (28) (solid curve); as the truncated (with four terms, [4]) series Eq. (25) (dashed curve). Included are the resummation
results Eqs. (33)-(34) using the underlying pQCD coupling (dotted curves, grey band).

δd is

δd(Q2)pt;res
(D=0) = ± 1

π
Im

{∫ 1

0

dt

t
G

(−)
d (t)a(te−K̃Q2 + iε) +

∫ ∞
1

dt

t
G

(+)
d (t)a(te−K̃Q2 + iε)

+

∫ 1

0

dt

t
G

(SL)
d (t)

[
a(te−K̃Q2 + iε)− a(e−K̃Q2 + iε)

]}
(Q2 > 0, ε→ +0). (34)

We deduce from Fig. 3 that the (resummed) pQCD approach fails in the regime Q < 2 GeV, the main reason being
the Landau singularities (cut) of the pQCD coupling. On the other hand, the truncated series (25) gives results
apparently very close to those of the resummed expression (28). This results then in a minor deviation (∼ 0.001) of
the evaluated rτ ratio, cf. footnote 15. Nonetheless, as we will see later in this work, even such apparently minor
deviations of rτ will play a significant role in the determinations of nonperturbative parameters such as condensate
values and IR-regulating masses.

V. BOREL-LAPLACE SUM RULES OF THE τ-LEPTON DECAY DATA

A. Borel-Laplace sum rules: description of the method

In this Section, we will extract values of the condensates with dimension D = 4 and 6 of the (V+A)-channel
current-current correlator (Adler function) in our approach. These values will be extracted by applying Borel-Laplace
sum rules to the corresponding spectral function measured by the OPAL and ALEPH Collaborations. The approach is
following closely the sum rule analysis presented in Ref. [1], only that this time the D = 0 (leading-twist) contribution
of the Adler function will not be evaluated as truncated series (25) but as the renormalon-motivated resummation
(28). Therefore, we will not go into all the technical details of this extraction, but will refer to Ref. [1] for details.

The central quantities appearing in these sum rules are the quark current-current corelators

ΠJ,µν(q) = i

∫
d4x eiq·x〈TJµ(x)Jν(0)†〉 = (qµqν − gµνq2)Π

(1)
J (Q2) + qµqνΠ

(0)
J (Q2), (35)

where J=V,A, and Q2 ≡ −q2 is the squared momentum transfer. The quark currents are (for J=V) Jµ = uγµd
and (for J=A) Jµ = uγµγ5d. The sum rules will be applied to the (strangeless) (V+A)-channel; the corresponding
polarization function is

Π(Q2) ≡ ΠV+A(Q2) = Π
(1)
V (Q2) + Π

(1)
A (Q2) + Π

(0)
A (Q2), (36)

where the term Π
(0)
V (Q2) is neglected because ImΠ

(0)
V (−σ− iε) ∝ (md−mu)2. The corrections O(m2

u,d) and O(m4
u,d)

will not be included because they are numerically negligible.
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By the general principles of Quantum Field Theory, the correlator is a holomorphic (analytic) function in the
complex Q2-plane, with the exception of the the negative semiaxis, Q2 ∈ C\(−∞,−m2

π). If we multiply Π(Q2)
with any function g(Q2) which is holomorphic in the Q2-plane, then the application of the Cauchy theorem to the
integration contour presented in Fig. 4 gives the sum rule∮

C1+C2

dQ2g(Q2)Π(Q2) = 0 ⇒ (37a)∫ σmax

0

dσg(−σ)ω(exp)(σ) = −iπ
∮
|Q2|=σmax

dQ2g(Q2)Π(th)(Q
2), (37b)

where ω(σ) is the spectral function of Π(Q2) (along the cut)

ω(σ) ≡ 2π Im Π(Q2 = −σ − iε) , (38)

In the sum rule (37b), in practice the left-hand side is determined by the measured values, and the right-hand side by

C2

Q
2
−plane

+ i ε

1Ci ε

+R−R

−R −

FIG. 4: The closed contour C1 + C2 for integration of g(Q2)Π(Q2). Here, the contour radius is R = σmax (≤ m2
τ ).

the theoretical values. The spectral function ω(σ) was measured in the τ -lepton semihadronic decays by the OPAL
[68–70] and ALEPH Collaboration [71–74]. These experimental results are presented in Figs. 5. In addition to these
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2

ω
A
+
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ALEPH

FIG. 5: The spectral function ω(σ) for the (V+A)-channel, measured by OPAL (left-hand) and by ALEPH Collaboration (right-hand),
without the pion peak contribution. We will take σmax = 3.136 for OPAL and 2.80 GeV2 for ALEPH.

measured contributions, the pion peak contribution δωπ(σ) = 2π2f2
πδ(σ − m2

π) (where fπ = 0.1305 GeV) must be
added. The largest value of σ in the case of OPAL is σmax = 3.136 GeV2 (which is close to m2

τ = 3.157 GeV2). On
the other hand, the uncertainties of the last few bins of the ALEPH data are very large, so we decided to take in the
case of ALEPH σmax = 2.80 GeV2.
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The correlator function has an Operator Product Expansion (OPE)

Πth(Q2) = − 1

2π2
ln(Q2/µ2) + Πth(Q2)(D=0) +

∑
n≥2

〈O2n〉V+A

(Q2)n
(
1 + Cna(Q2)

)
, (39)

where 〈O2n〉V+A are condensates (vacuum expectation values) of local operators of dimension D = 2n (≥ 4). The
terms Cna(Q2) in the Wilson coefficients turn out to be negligible. Therefore, the OPE of the (full) Adler function
D(Q2), which is the logarithmic derivative of the correlator, is

D(Q2) ≡ −2π2 dΠth(Q2)

d lnQ2
= 1 + d(Q2)(D=0) + 2π2

∑
n≥2

n〈O2n〉V+A

(Q2)n
. (40)

If we apply integration by parts on the right-hand side of the sum rule (37b), we obtain∫ σmax

0

dσg(−σ)ωexp(σ) = − i

2π

∮
|Q2|=σmax

dQ2

Q2
D(Q2)G(Q2), (41)

where G(Q2) is such that dG(Q2)/dQ2 = g(Q2) and G(−σmax) = 0

G(Q2) =

∫ Q2

−σmax

dQ
′2g(Q

′2). (42)

The Borel-Laplace sum rules are those where

g(Q2) =
1

M2
exp

(
Q2

M2

)
, (43)

and M2 is a chosen complex Borel scale, and for convenience (see later) we equate only the real parts of the integrals

ReBexp(M2) = ReBth(M2) , (44)

where

Bexp(M2) =
1

M2

∫ σmax

0

dσ exp(−σ/M2)ωexp(σ) (45)

and

Bth(M2) = − i

2π

∫ π

φ=−π

dQ2

Q2
D(Q2)

[
exp(Q2/M2)− exp(−σmax/M

2)
] ∣∣
Q2=σmax exp(iφ)

(46a)

=
(
1− exp(−σmax/M

2)
)

+Bth(M2)(D=0) + 2π2
∑
n≥2

〈O2n〉V+A

(n− 1)! (M2)n
. (46b)

In Eq. (46b), the OPE expression (40) was taken into account, and the D = 0 part of Bth(M2) is

Bth(M2)(D=0) =
1

2π

∫ π

−π
dφ d(Q2 =σmaxe

iφ)(D=0)

[
exp

(
σmaxe

iφ

M2

)
− exp

(
−σmax

M2

)]
. (47)

B. Borel-Laplace sum rules: numerical results in V+A channel

As mentioned, in contrast to the sum rule analysis in Ref. [1], we now use in the expression (47) for d(Q2)(D=0) the
renormalon-motivated resummation (28) [and not the truncated series (25)]. Further, the D(≡ 2n) = 2 contribution
in the OPEs (40) and (47) is negligible because the effects O(m2

u,d) are negligible as mentioned earlier.
In practice, we include in the OPE only two terms beyond the leading-twist, i.e., D = 4 and D = 6 terms. One

reason for this is practical. Namely, if M2 = |M2| exp(iΨ), it is straightforward to see that the contribution of D = 2n
to ReBth(M2) is proportional to cos(iDΨ/2). Therefore, when Ψ = π/6, the condensates with D = 6, 18, . . . do not
contribute; when Ψ = π/4, the condensates with D = 4, 12, . . . do not contribute to ReBth(M2). Hence, when we have
only two D > 0 terms (D = 4, 6), the choice Ψ = π/6 eliminates the D = 6 term and we have only one parameter
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〈O4〉V+A to fit; the choice Ψ = π/4 eliminates the D = 4 term and we have only one parameter 〈O6〉V+A to fit.
The other practical reason to include only two D > 0 terms is that in Eq. (46b) the sum over the condensates is
proportional to 〈O2n〉V+A/((n − 1)!M2n); since we will have in our fit procedure |M2| ∼ 1 GeV2, the terms with
higher n are suppressed by the effect of the inverse factorial (n − 1)! provided that the values of the condensates
〈O2n〉V+A (in units of GeV2n) do not increase significantly with increasing n. We will see that the latter is true for
n = 2, 3 in some of the considered cases of interest.

We wish to point out yet another observation about the Borel-Laplace transforms B(M2): as seen in Eq. (45),
lower values of |M2| give more weight to lower values of σ, i.e., more weight to the IR-regime.

When we perform the fits in the way described in Ref. [1], at Ψ = π/6 and Ψ = π/4, we obtain, for each chosen value

of the input parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th , a specific central value and the experimental variation, separately

for the OPAL and the ALEPH data. For example, in the case of the input parameters αs(M
2
Z ; MS) = 0.1177 and

r
(D=0)
τ,th = 0.200 we obtain [for comparison, we also give the corresponding values obtained by the same approach but

using MS pQCD a(Q2; MS) instead of A(Q2)]

〈O4〉(OPAL)
V+A = (+3.3± 2.9)× 10−4 GeV4 (48a)

⇒ 〈aGG〉(OPAL) = (+3.97± 1.71)× 10−3 GeV4, (48b)

〈O6〉(OPAL)
V+A = (+6.3± 3.3)× 10−4 GeV6. (48c)

〈O4〉(OPAL)

V+A,MS
= (+19.2± 2.9)× 10−4 GeV4, (48d)

〈O6〉(OPAL)

V+A,MS
= (−48.6± 3.3) 10−4GeV6. (48e)

〈O4〉(ALEPH)
V+A = (+2.2± 1.2)× 10−4 GeV4 (49a)

⇒ 〈aGG〉(ALEPH) = (+3.32± 0.74)× 10−3 GeV4, (49b)

〈O6〉(ALEPH)
V+A = (+8.5± 1.4)× 10−4 GeV6. (49c)

〈O4〉(ALEPH)

V+A,MS
= (+15.5± 1.2)× 10−4 GeV4, (49d)

〈O6〉(ALEPH)

V+A,MS
= (−41.5± 1.4) 10−4GeV6. (49e)

These values were obtained by the same kind of fit as in Ref. [1], and we refer for details to that reference, including the
determination of the above (experimental) uncertainties. It turns out that these uncertainties displayed in Eqs. (48)-

(49) remain practically unchanged when the input values of αs(M
2
Z ; MS) and r

(D=0)
τ,th are varied as in Table I. We note

that in the ALEPH case the experimental uncertainties are significantly smaller, because the values of the covariance
matrix of the measured spectral function values ωexp(σ) are significantly smaller in the ALEPH case than in the
OPAL case (cf. Appendix C of [1] for details).

In Table II we display the extracted central values of the condensates for various cases of the input parameters

αs(M
2
Z ; MS) and r

(D=0)
τ,th , i.e., for the cases appearing in Table I.

The numerical results are somewhat different from those obtained in Ref. [1], primarily (a) due to different values
of αs(M

2
Z ; MS) = 0.1179 ± 0.0010, [53];16 and (b) due to the already mentioned different (improved) evaluation of

the Adler function d(Q2)(D=0) Eq. (28) as opposed to the truncated series (25). To a lesser degree, the differences

appear due to the earlier mentioned use of the five-loop MS beta function [55] and the corresponding four-loop
quark threshold matching [56], as opposed to the four-loop MS beta function and the corresponding three-loop quark
threshold matching.

We present in Figs. 6 the results of the Borel-Laplace sum rule fit to the OPAL data for M2 = |M2| exp(iΨ) with

Ψ = π/6 and π/4, for the central case of αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200. Using the central condensate

values obtained through these fits, in Fig. 7 we present the results of the sum rule for Ψ = 0, where the theoretical
curve now presents the prediction (not fit).

16 In [1] we used αs(M2
Z ; MS) = 0.1185± 0.0004.
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TABLE II: The central extracted values of the condensates 〈OD〉V+A (D = 4, 6), in units of GeVD, for various values of the

input parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th (in the same order as in Table I). The associated uncertainties are δ〈OD〉V+A(exp)

given in Eqs. (48)-(49).

αs(M
2
Z) r

(D=0)
τ,th 〈O4〉(OPAL)

V+A 〈O4〉(ALEPH)
V+A 〈O6〉(OPAL)

V+A 〈O6〉(ALEPH)
V+A

0.1184 0.203 -0.00098 -0.00107 +0.00133 +0.00155
0.1181 0.201 -0.00059 -0.00068 +0.00106 +0.00128
0.1181 0.203 -0.00023 -0.00033 +0.00104 +0.00126
0.1180 0.202 -0.00015 -0.00026 +0.00095 +0.00118
0.1180 0.203 +0.00018 +0.00008 +0.00085 +0.00107
0.1179 0.201 -0.00008 -0.00018 +0.00087 +0.00109
0.1179 0.202 +0.00023 +0.00012 +0.00078 +0.00100
0.1178 0.200 -0.00000 -0.00011 +0.00078 +0.00100
0.1178 0.201 +0.00028 +0.00017 +0.00070 +0.00093
0.1177 0.199 +0.00007 -0.00004 +0.00069 +0.00091
0.1177 0.200 +0.00033 +0.00022 +0.00063 +0.00085
0.1176 0.199 +0.00038 +0.00027 +0.00055 +0.00077
0.1175 0.197 +0.00021 +0.00010 +0.00051 +0.00074
0.1175 0.198 +0.00044 +0.00033 +0.00047 +0.00069
0.1175 0.1988 +0.00088 +0.00077 +0.00029 +0.00051
0.1174 0.197 +0.00049 +0.00039 +0.00039 +0.00061
0.1173 0.196 +0.00055 +0.00044 +0.00031 +0.00053
0.1173 0.197 +0.00098 +0.00087 +0.00015 +0.00037
0.1172 0.195 +0.00061 +0.00050 +0.00023 +0.00045
0.1172 0.196 +0.00096 +0.00085 +0.00011 +0.00034
0.1171 0.195 +0.00097 +0.00086 +0.00006 +0.00028
0.1170 0.194 +0.00099 +0.00088 -0.00000 +0.00022
0.1169 0.193 +0.00103 +0.00092 -0.00007 +0.00015
0.1181 0.199 -0.00082 -0.00091 +0.00100 +0.00121
0.1184 0.201 -0.00121 -0.00130 +0.00126 +0.00147
0.1184 0.199 -0.00143 -0.00153 +0.00119 +0.00140
0.1189 0.201 -0.00223 -0.00233 +0.00157 +0.00179

OPAL exp

〈O4〉  0.00033 GeV4

MS 〈O4〉  0.00192 GeV4
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FIG. 6: Borel-Laplace transforms ReB(M2) along the rays M2 = |M2| exp(iΨ) with Ψ = π/6 (left-hand side) and Ψ = π/4 (right-hand
side), as a function of |M2|, fitted to the OPAL data. The values of ReB(M2) obtained from the (OPAL) experimental results are
represented as the grey band, the central experimental values as thick solid curve.

In Figs. 8 and 9 we present the analogous curves when the ALEPH data are used instead.
All Figs. 6-9 include, for comparison, the results for the MS case, i.e., when in the D = 0 Adler function Eq. (28)

we replace A(Q
′2) 7→ a(Q

′2; MS) (with Nf = 3) corresponding to the strength value αs(M
2
Z ; MS) = 0.1177, i.e., with

the best fit condensate values Eqs. (48d)-(48e) and (49d)-(49e).
As can be seen from Figs. 6-9, the fit results with AQCD are considerably better than those with MS pQCD

coupling. This can be seen also by evaluating the χ2 quality parameters (which were minimized by the fit). The
parameters χ2 were evaluated by dividing the considered interval 0.65 GeV2 ≤ |M2| ≤ 1.50 GeV2 in n = 85 equally
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FIG. 7: Analogous to the previous Figures 6, but now the Borel-Laplace transforms B(M2) are for real M2 > 0.
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FIG. 8: Borel-Laplace transforms ReB(M2) along the rays M2 = |M2| exp(iΨ) with Ψ = π/6 (left-hand) and Ψ = π/4 (right-
hand), as a function of |M2|, fitted to the ALEPH data. The values of ReB(M2) obtained from the (ALEPH) experimental
results are represented as the grey band, the central experimental values as thick solid curve.

long intervals

χ2(Ψ) =
1

n

n∑
α=0

(
ReBth(M2

α)− ReBexp(M2
α)
)2
, (50)

where M2
α = |Mα|2 exp(iΨ) with Ψ fixed (π/6; π/4; 0) and |Mα|2 are the n + 1 (= 86) equidistant points in

the mentioned |M |2 interval [0.65, 1.50] GeV2: |M0|2 = 0.65 GeV2, |M1|2 = 0.66 GeV2, ...,|M85|2 = 1.50 GeV2.
ReBexp(M2

α) in Eq. (50) are the values using the central experimental data (the central experimental solid curves in

TABLE III: The values of the quality parameters χ2(Ψ) for AQCD and MS pQCD, for OPAL and ALEPH data, for Ψ = π/6,
π/4 and Ψ = 0. For the theoretical curves, the input strength parameter αs(M

2
Z ; MS) = 0.1177 was used, and for AQCD in

addition the input parameter value r
(D=0)
τ,th = 0.200 was taken. The corresponding parameters of the experimental deviations

are included for comparison.

data χ2(π/6) χ2(π/6)MS χ2(π/6)exp χ2(π/4) χ2(π/4)MS χ2(π/4)exp χ2(0) χ2(0)MS χ2(0)exp

OPAL 1.7× 10−7 2.4× 10−5 1.4× 10−4 4.4× 10−8 5.1× 10−5 2.0× 10−4 1.4× 10−6 1.6× 10−3 1.2× 10−4

ALEPH 8.9× 10−6 2.7× 10−5 1.4× 10−5 2.3× 10−5 1.7× 10−4 2.0× 10−5 1.6× 10−5 6.3× 10−4 1.2× 10−5
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FIG. 9: Analogous to the previous Figures 8, but now the Borel-Laplace transforms B(M2) are for real M2 > 0.

Figs. 6-9).17 In Table III we present the values of this best fit quality parameter for OPAL and ALEPH data for the

input values [αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200]. There, we include the experimental values χ2(Ψ)exp which

were obtained by applying the expression (50) to the difference between the central experimental curve and the upper
(or lower) edge of the experimental band presented in Figs. 6-9.18 We recall that the values of χ2(Ψ) for Ψ = 0 are
not obtained by the fit, but by the prediction when using for ReBth(M2) for M2 > 0 the condensate values obtained
from the fits of the cases Ψ = π/6 and π/4. In Table III we include the best fit quality parameters for the case when
the MS pQCD coupling ā is used.

In Tables IV and V we show the best fit quality parameters χ2(Ψ) for the various considered cases of the input

parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th , for OPAL and ALEPH data, respectively. In these Tables, we include the ratios

ratχ2(Ψ) ≡ χ2(Ψ)

χ2(Ψ)exp
, (51)

which can be considered, in comparisons of the different cases, as the relative quality fit parameters. For example,
we can consider ratχ2(Ψ) ≤ 2 as a fit of acceptably good quality. The results in Table IV imply that the fit quality
is in general very good for the OPAL data. However, for ALEPH data the fit quality is not always acceptably good,
especially for the Ψ = π/4 Borel-Laplace sum rule.19 We can deduce from the results for ratχ2(π/4) for ALEPH

data in Table V that the value of the parameter r
(D=0)
τ,th must increase in order to decrease the value of ratχ2(π/4) for

ALEPH data.
We can now evaluate the values of the condensates obtained from combined OPAL and ALEPH data. In the

next Section we will apply specific versions of the described AQCD to the evaluation of an emblematic low-energy

observable a
had(1)
µ , the hadronic vacuum polarization contribution to the anomalous magnetic moment of muon.

AQCD and information about its condensate values 〈OD〉V+A (D = 4, 6), which will be used in the evaluation of this

new observable, are determined by the “input” parameter values αs(M
2
Z ; MS) and r

(D=0)
τ,th . Therefore, we will consider

the values of the condensates 〈OD〉V+A (D = 4, 6) from combined OPAL and ALEPH data for each of the specific

17 In Figs. 8-9 we displayed the curves in the shorter |M |2-interval [0.65, 1.40] GeV2, for better visibility, although the fits were performed
in the mentioned wider interval [0.65, 1.50] GeV2.

18 The experimental bands in Figs. 6-9 are obtained by the use of the full covariance matrix of the OPAL and ALEPH data, respectively,
cf. Appendix C of Ref. [1].

19 When comparing the values of ratχ2 (Ψ) of ALEPH with OPAL data, we should also keep in mind that the experimental band width

for Borel-Laplace transforms is in the OPAL case significantly wider than in the ALEPH case: χ2(π/6)exp, χ2(π/4)exp and χ2(0)exp

are 1.38 × 10−4, 2.03 × 10−4, 1.20 × 10−4 for OPAL data, respectively; and 1.42 × 10−5, 2.03 × 10−5, 1.16 × 10−5 for ALEPH data,
respectively.
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TABLE IV: The values of the Borel-Laplace best fit quality parameters χ2(Ψ) for AQCD, for OPAL data, for Ψ = π/6, π/4

and Ψ = 0. The values are for various input parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th (in the same order as in Table I). Included

are also the values of the relative quality fit ratios ratχ2(Ψ), cf. Eq. (51).

αs(M
2
Z) r

(D=0)
τ,th χ2(π/6) ratχ2(π/6) χ2(π/4) ratχ2(π/4) χ2(0) ratχ2(0)

0.1184 0.203 9.6× 10−7 0.007 3.5× 10−7 0.002 4.6× 10−6 0.039
0.1181 0.201 1.5× 10−7 0.001 1.7× 10−7 0.001 2.4× 10−6 0.020
0.1181 0.203 1.3× 10−7 0.001 1.0× 10−6 0.005 4.7× 10−6 0.039
0.1180 0.202 6.5× 10−7 0.005 2.5× 10−7 0.001 3.5× 10−6 0.029
0.1180 0.203 2.4× 10−6 0.017 2.9× 10−6 0.014 4.2× 10−6 0.035
0.1179 0.201 2.2× 10−7 0.002 3.0× 10−8 0.000 2.5× 10−6 0.021
0.1179 0.202 1.4× 10−6 0.010 1.3× 10−6 0.006 3.1× 10−6 0.026
0.1178 0.200 2.3× 10−8 0.000 3.5× 10−7 0.002 1.7× 10−6 0.014
0.1178 0.201 6.2× 10−7 0.005 3.3× 10−7 0.002 2.1× 10−6 0.018
0.1177 0.199 6.8× 10−8 0.000 1.2× 10−6 0.006 1.0× 10−6 0.009
0.1177 0.200 1.7× 10−7 0.001 4.4× 10−8 0.000 1.4× 10−6 0.011
0.1176 0.199 7.1× 10−9 0.000 3.9× 10−7 0.002 7.8× 10−7 0.006
0.1175 0.197 7.1× 10−7 0.005 4.0× 10−6 0.020 2.9× 10−7 0.002
0.1175 0.198 1.2× 10−7 0.001 1.4× 10−6 0.007 4.0× 10−7 0.003
0.1175 0.1988 2.9× 10−7 0.002 1.9× 10−7 0.001 4.1× 10−7 0.003
0.1174 0.197 5.0× 10−7 0.004 2.9× 10−6 0.014 2.1× 10−7 0.002
0.1173 0.196 1.1× 10−6 0.008 5.1× 10−6 0.025 2.1× 10−7 0.002
0.1173 0.197 3.8× 10−8 0.000 7.0× 10−7 0.003 9.7× 10−9 0.000
0.1172 0.195 2.1× 10−6 0.015 7.8× 10−6 0.038 4.1× 10−7 0.003
0.1172 0.196 4.2× 10−7 0.003 2.4× 10−6 0.012 4.9× 10−8 0.000
0.1171 0.195 1.2× 10−6 0.008 4.8× 10−6 0.023 2.8× 10−7 0.002
0.1170 0.194 2.2× 10−6 0.016 7.8× 10−6 0.038 7.0× 10−7 0.006
0.1169 0.193 3.5× 10−6 0.026 1.1× 10−5 0.057 1.3× 10−6 0.011
0.1181 0.199 8.1× 10−8 0.001 1.9× 10−6 0.009 7.5× 10−7 0.006
0.1184 0.201 1.3× 10−7 0.001 3.6× 10−7 0.002 2.0× 10−6 0.017
0.1184 0.199 1.1× 10−7 0.001 2.4× 10−6 0.012 4.8× 10−7 0.004
0.1189 0.201 8.8× 10−8 0.001 9.0× 10−7 0.004 1.3× 10−6 0.010

cases given in Table I. The central value of the condensate 〈OD〉V+A is taken as the arithmetic mean20

〈OD〉 =
1

2

(
〈O(OPAL)

D 〉+ 〈O(ALEPH)
D 〉

)
. (52)

The final uncertainty σO will then be obtained from quadrature of half of the difference and the experimental uncer-
tainties of each of them

σO =

[(
σ

(OP−AL)
O

)2

+ (σO,exp)
2

]1/2

, (53a)

where : σ
(OP−AL)
O =

1

2

∣∣〈O(OPAL)
D 〉 − 〈O(ALEPH)

D 〉
∣∣, σO,exp =

1

2

[
(σO,OP,exp)2 + (σO,AL,exp)2

]1/2
. (53b)

The values of σO,OP,exp and σO,AL,exp are given in Eqs. (48)-(49), and they give [for fixed specific values of input

parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th ]

σO4,exp = 0.00016 GeV4, σO6,exp = 0.00018 GeV6. (54)

Further, σ
(OP−AL)
O4 = 0.00005 GeV4 and σ

(OP−AL)
O6 = 0.00011 GeV6. These values, as well as the values in Eq. (54),

are approximately independent of the input values αs(M
2
Z ; MS) and r

(D=0)
τ,th . Hence, we obtain

σO4 = 0.00016 GeV4, σO6 = 0.00021 GeV6, (55)

20 According to Eq. (52), we gave equal weight to the condensate values extracted from the OPAL and ALEPH data. Namely, although
the experimental uncertainties of ALEPH data are smaller than those of OPAL data, the quality of the fit of our theoretical AQCD
curves to the central experimental curves is better in the case of OPAL data.
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TABLE V: The same as in Table IV, but now for ALEPH data.

αs(M
2
Z) r

(D=0)
τ,th χ2(π/6) ratχ2(π/6) χ2(π/4) ratχ2(π/4) χ2(0) ratχ2(0)

0.1184 0.203 8.3× 10−6 0.58 2.3× 10−5 1.15 2.5× 10−5 2.14
0.1181 0.201 1.1× 10−5 0.80 3.0× 10−5 1.15 2.1× 10−5 1.83
0.1181 0.203 5.5× 10−6 0.39 1.5× 10−5 0.76 2.2× 10−5 1.90
0.1180 0.202 7.0× 10−6 0.50 1.9× 10−5 0.95 2.0× 10−5 1.76
0.1180 0.203 3.7× 10−6 0.26 1.1× 10−5 0.52 1.9× 10−5 1.64
0.1179 0.201 8.8× 10−6 0.62 2.4× 10−5 1.17 1.9× 10−5 1.65
0.1179 0.202 5.2× 10−6 0.37 1.4× 10−5 0.70 1.8× 10−5 1.54
0.1178 0.200 1.1× 10−5 0.76 2.9× 10−5 1.41 1.8× 10−5 1.55
0.1178 0.201 6.9× 10−6 0.49 1.8× 10−5 0.90 1.7× 10−5 1.45
0.1177 0.199 1.3× 10−5 0.93 3.4× 10−5 1.68 1.7× 10−5 1.47
0.1177 0.200 8.9× 10−6 0.63 2.3× 10−5 1.14 1.6× 10−5 1.37
0.1176 0.199 1.1× 10−5 0.78 2.8× 10−5 1.40 1.5× 10−5 1.31
0.1175 0.197 1.8× 10−5 1.31 4.7× 10−5 2.30 1.6× 10−5 1.37
0.1175 0.198 1.4× 10−5 0.96 3.4× 10−5 1.69 1.5× 10−5 1.27
0.1175 0.1988 7.9× 10−6 0.56 2.0× 10−5 0.98 1.1× 10−5 0.97
0.1174 0.197 1.6× 10−5 1.15 4.1× 10−5 2.01 1.4× 10−5 1.23
0.1173 0.196 1.9× 10−5 1.36 4.8× 10−5 2.36 1.4× 10−5 1.22
0.1173 0.197 1.2× 10−5 0.85 3.7× 10−5 1.46 1.1× 10−5 0.93
0.1172 0.195 2.3× 10−5 1.60 5.5× 10−5 2.73 1.4× 10−5 1.22
0.1172 0.196 1.6× 10−5 1.10 3.8× 10−5 1.87 1.1× 10−5 0.98
0.1171 0.195 1.9× 10−5 1.35 4.6× 10−5 2.28 1.2× 10−5 1.02
0.1170 0.194 2.3× 10−5 1.61 5.5× 10−5 2.70 1.2× 10−5 1.06
0.1169 0.193 2.7× 10−5 1.89 6.4× 10−5 3.15 1.3× 10−5 1.11
0.1181 0.199 1.6× 10−5 1.11 4.2× 10−5 2.06 1.8× 10−5 1.54
0.1184 0.201 1.1× 10−5 0.81 3.2× 10−5 1.57 2.0× 10−5 1.72
0.1184 0.199 1.6× 10−5 1.11 4.3× 10−5 2.10 1.6× 10−5 1.42
0.1189 0.201 1.2× 10−5 0.84 3.4× 10−5 1.67 1.7× 10−5 1.49

and both these values are independent of the input parameters, up to the digits displayed in Eq. (55). This then

gives, for the input parameters αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200, the combined OPAL+ALEPH values

〈O4〉V+A = −0.00028± 0.00016 GeV4, (56a)

〈O6〉V+A = +0.00074± 0.00021 GeV6. (56b)

For the other choices of the input parameters, only the central values in Eqs. (56) change accordingly, and can be
obtained from the arithmetic averages of the OPAL and ALEPH values in Table II, cf. Eq. (52).

C. Borel-Laplace sum rules: consistency checks with rτ

Consistency checks of the obtained results for 〈O6〉V+A can be made by comparing the theoretical and the experi-

mental values of the r
(D=0,σmax)
τ quantity, where the effective mass m2

τ (= 3.157 GeV2) in Eq. (9) is replaced by the
lower values σmax = 3.136 GeV2 in the case of OPAL data and σmax = 2.80 GeV2 in the case of ALEPH data. The
theoretical and experimental expressions are

r
(D=0,σmax)
τ,th =

1

2π

∫ +π

−π
dφ (1 + eiφ)3(1− eiφ) d(Q2 = σmaxe

iφ)(D=0), (57a)

r(D=0,σmax)
τ,exp =

[
2

∫ σmax

0

dσ

σmax

(
1− σ

σmax

)2(
1 + 2

σ

m2
τ

)
ωexp(σ)− 1

]
+ 12π2 〈O6〉V+A

σ3
max

(57b)
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TABLE VI: Comparison of the theoretical and experimental values of r
(D=0,σmax)
τ for various values of the input parameters

αs(M
2
Z ; MS) and r

(D=0)
τ,th (= r

(D=0,m2
τ )

τ ), in the same order as in Table I. The cases of OPAL data (σmax = 3.136 GeV2) and

ALEPH data (σmax = 2.80 GeV2) are given in separate columns. Included are the deviation factors Eqs. (59a)-(59b).

αs(M
2
Z) r

(D=0)
τ,th OPAL: r

(D=0,σmax)
τ,th r

(D=0,σmax)
τ,exp devrτ ALEPH: r

(D=0,σmax)
τ,th r

(D=0,σmax)
τ,exp devrτ

0.1184 0.203 0.20379 0.20391 -0.02 0.21778 0.21443 1.24
0.1181 0.201 0.20177 0.20288 -0.19 0.21540 0.21300 0.89
0.1181 0.203 0.20376 0.20282 0.16 0.21702 0.21291 1.52
0.1180 0.202 0.20275 0.20248 0.05 0.21594 0.21244 1.29
0.1180 0.203 0.20373 0.20208 0.28 0.21636 0.21189 1.65
0.1179 0.201 0.20175 0.20214 -0.07 0.21486 0.21196 1.07
0.1179 0.202 0.20273 0.20180 0.16 0.21535 0.21149 1.42
0.1178 0.200 0.20074 0.20180 -0.18 0.21379 0.21149 0.85
0.1178 0.201 0.20172 0.20152 0.04 0.21432 0.21109 1.19
0.1177 0.199 0.19974 0.20146 -0.29 0.21271 0.21101 0.63
0.1177 0.200 0.20072 0.20122 -0.09 0.21329 0.21068 0.96
0.1176 0.199 0.19972 0.20092 -0.21 0.21225 0.21025 0.74
0.1175 0.197 0.19773 0.20078 -0.52 0.21056 0.21006 0.18
0.1175 0.198 0.19872 0.20062 -0.32 0.21121 0.20983 0.51
0.1175 0.1988 0.19948 0.19992 -0.08 0.21113 0.20885 0.84
0.1174 0.197 0.19771 0.20031 -0.44 0.21016 0.20940 0.28
0.1173 0.196 0.19671 0.20000 -0.56 0.20912 0.20896 0.06
0.1173 0.197 0.19767 0.19939 -0.29 0.20929 0.20810 0.44
0.1172 0.195 0.19571 0.19969 -0.68 0.20806 0.20853 -0.17
0.1172 0.196 0.19668 0.19925 -0.44 0.20842 0.20790 0.19
0.1171 0.195 0.19568 0.19904 -0.57 0.20747 0.20761 -0.05
0.1170 0.194 0.19468 0.19880 -0.70 0.20649 0.20727 -0.29
0.1169 0.193 0.19368 0.19854 -0.83 0.20550 0.20690 -0.52
0.1181 0.199 0.19976 0.20264 -0.49 0.21334 0.21264 0.26
0.1184 0.201 0.20177 0.20363 -0.32 0.21566 0.21405 0.59
0.1184 0.199 0.19976 0.20337 -0.62 0.21346 0.21367 -0.08
0.1189 0.201 0.20177 0.20486 -0.53 0.21581 0.21577 0.01

For example, for the case of αs(M
2
Z ,MS) = 0.1177 and r

(D=0)
τ,th (≡ r(D=0,m2

τ )
τ,th ) = 0.200 we obtain21

r
(D=0,σmax)
τ,th (OPAL) = 0.20072, r(D=0,σmax)

τ,exp (OPAL) = 0.20122± 0.00586, (58a)

r
(D=0,σmax)
τ,th (ALEPH) = 0.21329, r(D=0,σmax)

τ,exp (ALEPH) = 0.21068± 0.00271. (58b)

The main uncertainty in the experimental values above (±0.00572 in the case of OPAL; ±0.00260 in the case of
ALEPH) comes from the integral involving ωexp(σ). Eqs. (58) show that in the case of the input strength value

αs(M
2
Z ; MS) = 0.1177, the input value r

(D=0
τ,th = 0.200 is consistent with the (OPAL and ALEPH) experimental data.

In Table VI we present these results for all the “input” cases of AQCD of Table I, and include the deviation factors
(’dev’)

devrτ (OPAL) ≡
[
r

(D=0,σmax)
τ,th (OPAL)− r(D=0,σmax)

τ,exp (OPAL)
]
/0.00586 (σmax = 3.136 GeV2), (59a)

devrτ (ALEPH) ≡
[
r

(D=0,σmax)
τ,th (ALEPH)− r(D=0,σmax)

τ,exp (ALEPH)
]
/0.00271 (σmax = 2.800 GeV2). (59b)

For a given pair of values of the input parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th (≡ r(D=0,m2

τ )
τ,th ), we will require |devrτ | < 1.5

for both OPAL and ALEPH data as the condition of passing the rτ -consistency check.

Comparison of these results in Table VI for αs(M
2
Z ; MS) = 0.1177 suggests that both values r

(D=0)
τ,th ≈ 0.199 and

0.200 pass the above rτ -consistency check, both for OPAL and ALEPH data; but in the next Section, we will see that

21 The uncertainty of r
(D=0,σmax)
τ,exp is obtained by using the full covariance matrix of ωexp(σ) values in the integral in Eq. (57b), and the

uncertainty δ〈O6〉V+A(exp) [cf. Eqs. (48c) and (49c)] in the last term in Eq. (57b), and adding them in quadrature.
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r
(D=0)
τ,th = 0.200 is preferred. And in the case of other αs(M

2
Z ; MS) values, we will see that only restricted intervals of

values r
(D=0)
τ,th are preferred (of width ≈ 0.001 or less).

VI. HADRONIC VACUUM POLARIZATION CONTRIBUTION TO MUON g − 2

After having constructed the A coupling, and determined the condensate values 〈OD〉V+A from the physics of
semihadronic decays of τ lepton, we now turn to a very-low-energy QCD observable, namely the leading order hadronic

vacuum polarization (had(1)) contribution to the anomalous magnetic moment of µ lepton, (gµ/2−1)had(1) ≡ ahad(1)
µ .

This quantity can be deduced experimentally to a high precision from the available measurements of the cross section

e+e− → γ∗ → hadrons.22 The recent values of a
had(1)
µ extracted in this way are [75]23

1010 × ahad(1)
µ;exp ≈ 694± 4 . (60)

The theoretical evaluation of this quantity involves the current-current correlation function ΠV (Q2) = Π
(1)
V (Q2)

[cf. Eqs. (35)-(36)]. For this reason, the full perturbative + nonperturbative V-channel Adler function DV (Q2) should
be evaluated

DV(Q2) ≡ −4π2 dΠV(Q2)

d lnQ2
= d(Q2)D=0 +DV(Q2)(NP)

= d(Q2)(D=0) + 1 + 2π2
∑
n≥2

n2〈O2n〉V
(Q2)n

. (61)

The normalization here was chosen in the usual way, so that the perturbative (D = 0) part is the same as in the
(V+A)-channel case, and for the condensates we have the simple relations 〈OD〉V±A = 〈OD〉V ±〈OD〉A [cf. Eq. (40)].
We recall that D = 0 part is evaluated in the same way as previously, Eq. (28).

The theoretical evaluation of a
had(1)
µ is given by

ahad(1)
µ =

α2
em

3π2

∫ ∞
0

ds

s
K(s)Rγ,data(s), (62)

where

K(s) =

∫ 1

0

dx
x2(1− x)

x2 + s
m2
µ

(1− x)
, (63a)

Rγ,data(s) = 4πkf ImΠV(−s− iε), (63b)

kf = 3
∑
f

Q2
f . (63c)

We use Nf = 3, which implies that kf = 2. When can apply the Cauchy theorem to the integrand K(−Q2)ΠV(Q2)/Q2∮
C++C−

dQ2

Q2
K(−Q2)ΠV(Q2) = 0, (64)

22 In Ref. [76] this cross section was used to extract the Adler function DV (Q2). For high order perturbative contribtions to this cross
section, see e.g. Refs. [77].

23 The full SM value is 1010×a(SM)
µ = 11 659 181.0 (4.3) [78] [these authors took 1010×ahad(1)

µ = 693.1(4.0)], while the directly measured

(’dir.exp’) value of the full aµ is [79] 1010 × adir.exp
µ = 11 659 208.9 (6.3), which is 3.7σ higher. The BMW Collaboration [80] obtained

recently from lattice calculation significantly higher values for the had(1)-contribution, 1010 × ahad(1)
µ;latt = 712.4 ± 4.5 [80], which would

indicate that the deviation between adir.exp
µ and a

(SM)
µ reduces to about 1σ and that no new physics beyond QCD (beyond SM) is needed

for the explanation of the deviation. However, the results of lattice calculation by another group [81] indicates that higher statistical

uncertainties appear in a
had(1)
µ;latt than assumed in [80]. This would then ease tension with the results Eq. (60) based on the measurements

of e+e− → γ∗ → hadrons, but restore the tension between adir.exp
µ and a

(SM)
µ . For some early estimates on a

had(1)
µ see Refs. [82, 83].

For some of the works on the prospects of specific new physics to explain the difference adir.exp
µ − a(SM)

µ , we refer to Refs. [84–86]. The

impact of a
had(1)
µ on the global electroweak (EW) fit was investigated in [87].
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FIG. 10: The closed path C+ + C− for integration of K(−Q2)ΠV (Q2)/Q2. The limit R→∞ is understood.

where the closed path C+ + C− is made of two disconnected parts and is shown in Fig. 10 (R → ∞). We note that
ΠV(Q2) is holomorphic with a cut along the negative semiaxis in the complex Q2-plane, and K(−Q2) is holomorphic

with a cut along the positive semiaxis. The relation (64), in conjunction with Eqs. (62)-(63), then implies for a
had(1)
µ

the following expression in terms of the V-channel ΠV (Q2) correlation function:

ahad(1)
µ =

8

3
α2
em

∫ 1

0

dx(1− x)

[
ΠV (Q2 = 0)−ΠV

(
Q2 =m2

µ

x2

(1− x)

)]
. (65)

When applying integration by parts, this can be expressed in terms of the (full) Adler function (61)

ahad(1)
µ =

α2
em

3π2

∫ 1

0

dx

x
(1− x)(2− x)DV

(
Q2 =m2

µ

x2

(1− x)

)
. (66)

We can see from this expression that the main contribution to this quantity comes from the deep IR-regime Q2 . m2
µ

(∼ 0.01 GeV2). The Adler function DV that appears in this integration is in principle represented by the OPE
expansion (61), where the D = 0 contribution is the renormalon-motivated resummation Eq. (28), cf. also Appendix
A.

On the other hand, the terms with D (≡ 2n) ≥ 4 in Eq. (61) require the knowledge of the V-channel condensates
〈O2n〉V. In the previous Section, we extracted the (V+A)-channel condensates, cf. Eqs. (56) and Table II.

For D = 4, the V-channel condensate values are simply connected with those of the (V+A)-channel

〈O4〉V = 〈O4〉A =
1

2
〈O4〉V+A, (67)

which gives us the values of 〈O4〉V immediately from Eq. (56a) for the input parameters αs(M
2
Z ; MS) = 0.1177 and

r
(D=0)
τ,th = 0.200

〈O4〉V = (+0.00014± 0.00008) GeV4. (68)

On the other hand, for the D = 6 condensates, a sum rule analysis of the (V-A)-channel [88] gives for 〈O6〉V−A

〈O6〉V−A = (−0.00570± 0.00120) GeV6 (OPAL), (69a)

〈O6〉V−A = (−0.00360± 0.00070) GeV6 (ALEPH), (69b)

When we average these results over OPAL and ALEPH in the same way as we averaged 〈OD〉V+A (D = 4, 6) in
Sec. V B, Eqs. (52)-(53), the result is24

〈O6〉V−A = (−0.00465± 0.00126) GeV6. (70)

24 Similar results can be obtained from the earlier analyses [89] [(−0.00660±0.00110) GeV6 (OPAL)] and [90] [(−0.00316±0.00091) GeV6

(ALEPH)] which give the average 〈O6〉V−A = (−0.00488± 0.00186) GeV6.
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When we now take into account that 〈O6〉V = (1/2)(〈O6〉V+A + 〈O6〉V−A), we obtain from Eq. (70) and Eq. (56b)

[i.e., for αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200]

〈O6〉V = (−0.00196± 0.00064) GeV6, (71)

For other cases of the input parameters, we use for the central values of 〈OD〉V+A the corresponding values obtained
from arithmetic averages of the OPAL and ALEPH values in Table II, which changes then the corresponding central
values in Eqs. (68) and (71), but the uncertainties (±0.00008 GeV4; ±0.00064 GeV6) remain the same.

Having now the condensate values of the first two higher-dimension terms (D = 4, 6) in the OPE expansion (61), we
still do not have a workable expression for DV (Q2) at very low momenta Q2 . m2

µ which we need in the integral (66).
The problem does not reside in the D = 0 term of the OPE expansion (61), because this term is evaluated in AQCD

in its resummed form (28) and thus goes to zero at Q2 → 0 [because A(Q
′2) ∼ Q

′2 → 0 when Q
′2 → 0], cf. Fig. 3.

The problem resides in the higher-dimension terms (D ≥ 4) which diverge in the deep IR-regime. This is a general
(and problematic) feature of the OPE expansions. We have to regularize these terms in the deep IR-regime. The
D = 4, 6 terms will be regularized here with regularization mass parameters25 M2,M3, by replacing in the D = 4
term in the denominator Q2 7→ (Q2 +M2

2), and by replacing in the D = 6 term in the denominator Q2 7→ (Q2 +M2
3).

The residue of the corresponding D = 6 term must also be modified so that the expansion for large Q2 reproduces the
OPE expansion in Eq. (61) up to D = 6. This leads to the following ansatz for the (IR regularized) part D(Q2)(NP)

in Eq. (61):

DV(Q2)(NP) = 1 + 2π2
∑
n≥2

n2〈O2n〉V
(Q2)n

(72a)

= 1 + 4π2

[
2〈O4〉V

(Q2 +M2
2)2

+

(
3〈O6〉V + 4M2

2〈O4〉V
)

(Q2 +M2
3)3

]
(72b)

We know that DV (Q2) → 0 when Q2 → 0. Since the D = 0 term in (61) already has this property, as mentioned
earlier, this then implies

DV(0) = 0 ⇒ DV(0)(NP) = 0. (73)

Consequently, M3 is not independent, but is a function of the mass M2 and of the two condensate values

M2
3 =

[
(−3)〈O6〉V − 4M2

2〈O4〉V
1

4π2 + 2〈O4〉V/M4
2

]1/3

. (74)

At this point, the only free parameter is the mass M2. In principle, this parameter can now be determined in the

following way: We require the reproduction of the experimental value (60) of a
had(1)
µ by the integration (66), where

in the latter integral we use for DV (Q2) the expression

DV(Q2;M2
2) = d(Q2)D=0 +DV(Q2;M2

2)(NP), (75)

and where DV(Q2;M2
2)(NP) is given in Eq. (72b) in conjunction with Eq. (74).

Here: (I) for the D = 0 contribution d(Q2)(D=0) we use the renormalon-motivated resummation Eq. (28), where the

coupling A(Q
′2) is the 3δ AQCD coupling obtained in Sec. IV; (II) the D > 0 contribution DV(Q2)(NP) is represented

by the the IR-regularized higher-twist terms Eq. (72b) where M3 is determined by Eq. (74); (III) the condensate
values appearing in these Eqs. (72b) and (74) are those of Eqs. (68) and (71) when the input parameters for the

coupling A(Q2) are taken to be αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200; for other values of the input parameters,

the condensate values are those as explained in the text after Eq. (71).
If the described QCD framework is consistent in the entire IR-regime, the described procedure should give us for

the IR-regularizing mass parameters M2 and M3 real values (i.e., real positive values for the squares M2
2 and M2

3),
and these values are expected to be in the typical regime of the nonperturbative QCD M2 ∼ M3 . 1 GeV2. The

25 In Refs. [91], and later in [7], similar regularizations of higher-twist OPE terms were applied in the analysis of the Bjorken Sum Rule.
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TABLE VII: The extracted central values of the V-channel condensates 〈OD〉 (D = 2, 3), in units of GeVD; the extracted
values of the IR-regularizing masses Mn (in GeV), and the variation of these masses when the V channel condensates vary
around their central values by their uncertainties δ〈O4〉 = ±0.0008 GeV4 and δ〈O6〉 = ±0.0064 GeV6. The various cases of the
A-coupling input parameters are given in the same order as in Table I.

αs(M
2
Z) r

(D=0)
τ,th 〈O4〉V 〈O6〉V M2 δM2(O4) δM2(O6) M3 δM3(O4) δM3(O6)

0.1184 0.203 -0.00051 -0.00161 3.241 +0.290
−0.229

+0.143
−0.149 1.006 0.000 0.000

0.1181 0.201 -0.00032 -0.00174 4.389 +0.679
−0.464

+0.168
−0.175 1.028 0.000 0.000

0.1181 0.203 -0.00014 -0.00175 9.096 +4.799
−1.840

+0.187
−0.190 1.126 0.000 0.000

0.1180 0.202 -0.00010 -0.00179 10.512 +12.993
−2.677

+0.226
−0.231 1.118 0.000 0.000

0.1180 0.203 +0.00007 -0.00184 0.346 +0.035
+43.904

−0.017
+0.012 0.734 −0.016

+0.487
−0.057
+0.042

0.1179 0.201 -0.00006 -0.00184 13.243 −12.947
−4.573

+2.738
−3.473 1.1109 −0.359

+0.000 0.000
0.1179 0.202 +0.00009 -0.00188 0.359 +0.029

−0.099
−0.017
+0.013 0.733 −0.015

+0.025
−0.057
+0.042

0.1178 0.200 -0.00003 -0.00188 18.274 −17.935
−8.731

+0.432
−0.444 1.103 −0.358

+0.000 0.000
0.1178 0.201 +0.00011 -0.00192 0.371 +0.024

−0.061
−0.018
+0.013 0.732 −0.013

+0.020
−0.056
+0.042

0.1177 0.199 +0.00001 -0.00193 0.267 +0.101
−11.394

−0.013
+0.010 0.763 −0.024

+0.332
−0.053
+0.039

0.1177 0.200 +0.00014 -0.00196 0.384 +0.019
−0.040

−0.019
+0.014 0.730 −0.012

+0.016
−0.055
+0.042

0.1176 0.199 +0.00016 -0.00200 0.392 +0.017
−0.033

−0.020
+0.014 0.730 −0.012

+0.015
−0.054
+0.042

0.1175 0.197 +0.00008 -0.00201 0.367 +0.032
−−

−0.018
+0.015 0.748 −0.014

−−
−0.053
+0.041

0.1175 0.198 +0.00019 -0.00203 0.401 +0.014
−0.025

−0.020
+0.015 0.728 −0.011

+0.013
−0.054
+0.041

0.1175 0.1988 +0.00041 -0.00213 0.425 +0.005
−0.008

−0.021
+0.016 0.703 −0.009

+0.009
−0.054
+0.041

0.1174 0.197 +0.00022 -0.00207 0.409 +0.013
−0.020

−0.020
+0.016 0.727 −0.011

+0.012
−0.054
+0.041

0.1173 0.196 +0.00025 -0.00211 0.417 +0.010
−0.017

−0.021
+0.016 0.726 −0.010

+0.012
−0.053
+0.041

0.1173 0.197 +0.00046 -0.00219 0.432 +0.004
−0.007

−0.022
+0.016 0.702 −0.009

+0.009
−0.053
+0.041

0.1172 0.195 +0.00028 -0.00216 0.423 +0.010
−0.013

−0.021
+0.017 0.726 −0.009

+0.011
−0.052
+0.041

0.1172 0.196 +0.00045 -0.00221 0.434 +0.004
−0.007

−0.022
+0.016 0.706 −0.009

+0.009
−0.053
+0.041

0.1171 0.195 +0.00046 -0.00224 0.437 +0.004
−0.007

−0.022
+0.017 0.708 −0.009

+0.009
−0.052
+0.040

0.1170 0.194 +0.00047 -0.00227 0.440 +0.004
−0.006

−0.023
+0.017 0.710 −0.009

+0.008
−0.052
+0.040

0.1169 0.193 +0.00049 -0.00231 0.443 +0.004
−0.005

−0.022
+0.018 0.711 −0.008

+0.009
−0.051
+0.040

0.1181 0.199 -0.00043 -0.00177 3.003 +0.327
−0.248

+0.181
−0.193 0.968 0.000 0.000

0.1184 0.201 -0.00063 -0.00164 2.553 +0.182
−0.151

+0.147
−0.156 0.972 0.000 0.000

0.1184 0.199 -0.00074 -0.00168 2.437 +0.147
−0.125

+0.132
−0.139 0.982 +0.000

−0.001
+0.000
−0.001

0.1189 0.201 -0.00114 -0.00148 2.255 +0.087
−0.079

+0.093
−0.099 1.015 0.000 0.000

aforedescribed numerical procedure of determination of the mass parameter M2 indeed gives such values. Namely,

when the input parameters for the coupling have the values αs(M
2
Z ; MS) = 0.1177 and r

(D=0)
τ,th = 0.200, we obtain

M2 =
[
0.384+0.019

−0.040(O4)−0.019
+0.014(O6)

]
GeV, (76a)

M3 =
[
0.730−0.012

+0.016(O4)−0.055
+0.042(O6)

]
GeV. (76b)

The uncertainties of the extracted masses due to the uncertainties δ〈O4〉V = ±0.00008 GeV4 and δ〈O6〉V =
±0.00064 GeV4 are included in Eqs. (76). These values of M2 and M3 are both real (i.e, their squares are pos-
itive) and lie in the region around or below 1 GeV, as expected for IR-regularizing masses in QCD. The variation

±4 of the experimental value 1010 × ahad(1)
µ;exp , Eq. (60), affects only slightly the extracted mass values: δM2 = ±0.65

MeV and δM3 = ±0.27 MeV. If we used the higher value 1010 × ahad(1)
µ;exp = 712.4 (which is the central value of the

prediction in Ref. [80]), the extracted values would not increase much: δM2 = 3.1 MeV and δM3 = 1.3 MeV.
For other values of the input parameters, the extracted central values ofM2 andM3 are given in Table VII, where

also the central values of 〈O4〉V and 〈O6〉V are included. We see that the values of M2 and M3 are both below 1
GeV only when 〈O4〉V is positive.26 Whenever the value of the condensate 〈O4〉V is negative, the extracted value of
the massM2 becomes at least several GeV and often ∼ 10 GeV, which is not expected for an IR-regularizing mass in
QCD. When the value of 〈O4〉V approaches zero from the negative side, the extracted value of M2 increases to very
large values.

26 In such cases, also the value of the gluon condensate 〈aGG〉 is positive, due to the relation 〈aGG〉 = 12〈O4〉V + 6f2
πm

2
π (where

6f2
πm

2
π ≈ 0.00199 GeV4).
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TABLE VIII: The parameters ratχ2(Ψ)(ALEPH) (Ψ = π/6, π/4, 0), devrτ (ALEPH), 〈O4〉V (in GeV4) and M2 (in GeV), for
the considered A-coupling cases. These six parameters are critical in the sense of selection of the acceptable input parameter

cases, see the text. The various cases of the A-coupling input parameters αs(M
2
Z ; MS) and r

(D=0)
τ,th are presented in the same

order as in Table I.

αs(M
2
Z) r

(D=0)
τ,th rat

(AL)

χ2

(
π
6

)
rat

(AL)

χ2

(
π
4

)
rat

(AL)

χ2 (0) dev
(AL)
rτ 〈O4〉V M2

0.1184 0.203 0.58 1.15 2.14 1.24 −0.00051± 0.00008 3.241+0.290
−0.229(O4)+0.143

−0.149(O6)
0.1181 0.201 0.80 1.15 1.83 0.89 −0.00032± 0.00008 4.389+0.679

−0.464(O4)+0.168
−0.175(O6)

0.1181 0.203 0.39 0.76 1.90 1.52 −0.00014± 0.00008 9.096+4.799
−1.840(O4)+0.187

−0.190(O6)

0.1180 0.202 0.50 0.95 1.76 1.29 −0.00010± 0.00008 10.512+12.993
−2.677 (O4)+0.226

−0.231(O6)
0.1180 0.203 0.26 0.52 1.64 1.65 +0.00007± 0.00008 0.346+0.035

+43.904(O4)−0.017
+0.012(O6)

0.1179 0.201 0.62 1.17 1.65 1.07 −0.00006± 0.00008 13.243−12.947
−4.573 (O4)+2.738

−3.473(O6)
0.1179 0.202 0.37 0.70 1.54 1.42 +0.00009± 0.00008 0.359+0.029

−0.099(O4)−0.017
+0.013(O6)

0.1178 0.200 0.76 1.41 1.55 0.85 −0.00003± 0.00008 18.274−17.935
−8.731 (O4)+0.432

−0.444(O6)
0.1178 0.201 0.49 0.90 1.45 1.19 +0.00011± 0.00008 0.371+0.024

−0.061(O4)−0.018
+0.013(O6)

0.1177 0.199 0.93 1.68 1.47 0.63 +0.00001± 0.00008 0.267+0.101
−11.394(O4)−0.013

+0.010(O6)
0.1177 0.200 0.63 1.14 1.37 0.96 +0.00014± 0.00008 0.384+0.019

−0.040(O4)−0.019
+0.014(O6)

0.1176 0.199 0.78 1.40 1.31 0.74 +0.00016± 0.00008 0.392+0.017
−0.033(O4)−0.020

+0.014(O6)
0.1175 0.197 1.31 2.30 1.37 0.18 +0.00008± 0.00008 0.367+0.032

−− (O4)−0.018
+0.015(O6)

0.1175 0.198 0.96 1.69 1.27 0.51 +0.00019± 0.00008 0.401+0.014
−0.025(O4)−0.020

+0.015(O6)
0.1175 0.1988 0.56 0.98 0.97 0.84 +0.00041± 0.00008 0.425+0.005

−0.008(O4)−0.021
+0.016(O6)

0.1174 0.197 1.15 2.01 1.23 0.28 +0.00022± 0.00008 0.409+0.013
−0.020(O4)−0.020

+0.016(O6)
0.1173 0.196 1.36 2.36 1.22 0.06 +0.00025± 0.00008 0.417+0.010

−0.017(O4)−0.021
+0.016(O6)

0.1173 0.197 0.85 1.46 0.93 0.44 +0.00046± 0.00008 0.432+0.004
−0.007(O4)−0.022

+0.016(O6)
0.1172 0.195 1.60 2.73 1.22 -0.17 +0.00028± 0.00008 0.423+0.010

−0.013(O4)−0.021
+0.017(O6)

0.1172 0.196 1.10 1.87 0.98 0.19 +0.00045± 0.00008 0.434+0.004
−0.007(O4)−0.022

+0.016(O6)
0.1171 0.195 1.35 2.28 1.02 -0.05 +0.00046± 0.00008 0.437+0.004

−0.007(O4)−0.022
+0.017(O6)

0.1170 0.194 1.61 2.70 1.06 -0.29 +0.00047± 0.00008 0.440+0.004
−0.006(O4)−0.023

+0.017(O6)
0.1169 0.193 1.89 3.15 1.11 -0.52 +0.00049± 0.00008 0.443+0.004

−0.005(O4)−0.022
+0.018(O6)

0.1181 0.199 1.11 2.06 1.54 0.26 −0.00043± 0.00008 3.003+0.327
−0.248(O4)+0.181

−0.193(O6)
0.1184 0.201 0.81 1.57 1.72 0.59 −0.00063± 0.00008 2.553+0.182

−0.151(O4)+0.147
−0.156(O6)

0.1184 0.199 1.11 2.10 1.42 -0.08 −0.00074± 0.00008 2.437+0.147
−0.125(O4)+0.132

−0.139(O6)
0.1189 0.201 0.84 1.67 1.49 0.01 −0.00114± 0.00008 2.255+0.087

−0.079(O4)+0.093
−0.099(O6)

Therefore, we conclude that in our construction of the A-coupling, at a given input value of αs(M
2
Z ; MS), the value

of the other input parameter r
(D=0)
τ,th (≡ r

(D=0,m2
τ )

τ,th ) should be such that the Borel-Laplace sum rules yield a positive

value of the extracted condensate 〈O4〉V+A (= 2〈O4〉V ). From Table VII we can see that this then severely restricts

the possible values of r
(D=0)
τ,th toward the higher values. On the other hand, we have also several other restrictions to

be fulfilled for a our constructed A-coupling, namely that it should pass the rτ -consistency check for ALEPH and
OPAL (cf. Table VI), e.g., |devrτ | < 1.5; and that the fit quality parameters in the Borel-Laplace sum rules χ2(Ψ)
(Ψ = π/6, π/4, 0) should be reasonably small, e.g.. χ2(Ψ) < 2 χ2

exp(Ψ), i.e., ratχ2(Ψ) < 2, cf. Tables IV-V. In Table
VIII we summarize these results for all the considered cases, in order to see the mentioned trends more clearly. In the
Table we present the five obtained critical parameters, namely ratχ2(ψ)(ALEPH) (Ψ = π/6, π/4, 0), devrτ (ALEPH),
and 〈O4〉V .27 The last column has the extracted values of the IR-regularizing massM2, to remind us that 〈O4〉V must
be positive in order to have acceptable values of M2 (. 1 GeV). We see that the input values αs(M

2
Z ; MS) ≥ 0.1180

are not in the preferred regime, because in such cases the positivity of 〈O4〉V requires to use a relatively large value of

the other input parameter, r
(D=0)
τ,th > 0.202, which then implies that the rτ -consistency condition for ALEPH data, say

|devrτ (ALEPH)| < 1.5, is not fulfilled. We recall that in Table VIII (as well as in other Tables I-II, IV-VII), all the

input data with αs(M
2
Z ; MS) ≤ 0.1180 have the values of the input parameter r

(D=0)
τ,th presented up to its maximum

possible value at that αs(M
2
Z ; MS) within three digits (i.e., by increasing the maximal presented value of r

(D=0)
τ,th by

27 The fit-quality parameters for the OPAL data, ratχ2 (ψ)(OPAL) (Ψ = π/6, π/4, 0) and devrτ (OPAL), are in the considered cases
significantly smaller and thus acceptable (cf. Tables IV and VI), due to the significantly higher experimental uncertainty of OPAL data.
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0.001 we would surpass the maximal possible value).28 If requiring ratχ2(Ψ) < 2 (Ψ = π/6, π/4, 0) and |devrτ | < 1.5,
and 〈O4〉V > 0, then the results summarized in Table VIII suggest that, within the considered 3δ AQCD framework,
the preferred values of the input parameters are: 0.1172 ≤ α(M2

Z ; MS) ≤ 0.1179. In these cases, the corresponding

values of r
(D=0)
τ,th are in a narrow interval of width 0.001-0.002, which includes the maximal possible value of r

(D=0)
τ,th as

achievable in the considered 3δ AQCD famework [at the considered value of α(M2
Z ; MS)]. Among the Borel-Laplace

sum rule quality-fit parameters ratχ2(Ψ) for ALEPH data, the parameter with Ψ = π/4 is often the most stringent.
In that sense, among the specific choices of the values of the output parameters in Table VIII, the most attractive

appear to be the choices of (α(M2
Z ; MS), r

(D=0)
τ,th ): (0.1178, 0.201); (0.1177, 0.200); (0.1175, 0.1988); (0.1173, 0.197).

When αs(M
2
Z ; MS) > 0.1179, it turns out that the positive value of 〈O4〉V (and thus M2 . 1 GeV) is achieved

at a price of not passing clearly the rτ -test for the ALEPH data [devτ (ALEPH) > 1.5]. On the other hand,
when αs(M

2
Z ; MS) < 0.1173, the coupling gives unattractive values χ2(π/4) > 2 χ2(π/4)exp for ALEPH data, i.e.,

rat
(AL)
χ2 (π/4) > 2, even when r

(D=0)
τ,th is very close to its maximal possible value [at the considered value of α(M2

Z ; MS)].

All the solutions presented here are mutually related in the way that we come from one solution to another by
continuously varying the imput parameters, i.e., they represent one class of solutions. However, for given input

values αs(M
2
Z ; MS) and r

(D=0)
τ,th , there is in general at least one other class of solutions, which gives higher s0 values:

s0 > 1000, thus M2
0 > 12 GeV2. These solutions are less attractive, because at Q2 → 0 they behave as A(Q2) = kQ2

with k > 20 GeV−2, which makes them significantly higher than the lattice value Alatt(Q
2) at low positive Q2 and

significantly lower at the local maximum.

VII. SUMMARY

In this work we analysed a QCD-variant whose coupling A(Q2) [the analog of αs(Q
2)/π] has a spectral function

ρA(σ) ≡ ImA(−σ − iε) such that at large scales σ ≥ M2
0 (� Λ2

QCD) it coincides with the underlying pQCD spectral

function, and at scales σ < M2
0 it is parametrized in terms of three Dirac-delta functions. Such a spectral function

ρA(σ) contains seven parameters.
Four of the parameters are used (adjusted) as a “precision tool” to achieve that at large scales (|Q2| > 1GeV2)

the considered coupling A(Q2) approaches the underlying pQCD coupling a(Q2) (≡ αs(Q
2)/π) to an increasingly

large precision (when |Q2| increases), A(Q2)− a(Q2) ∼ (Λ2
QCD/Q

2)5. One of the remaining three parameters is used

(adjusted) to reproduce the values of the semihadronic strangeless τ decay rate ratio rτ consistent with experiments
(the physics of “intermediate” scales |Q2| ∼ 1 GeV2). The two remanining parameters are used to achieve the
behaviour of A(Q2) at |Q2| < 1 GeV2 as suggested by large-volume lattice calculations [43, 44], namely that A(Q2) ∼
Q2 at Q2 → 0 and that A(Q2) at positive Q2 has a local maximum at Q2 ≈ 0.135 GeV2 (when using the MS-scaling).

The construction of the coupling is performed in a renormalization scheme which coincides up to the four-loop
level with the MM scheme29 but rescaled to the usual MS scaling (ΛMM 7→ ΛMS). In addition to the mentioned
seven parameters, there is an additonal implicit parameter involved, namely the strength of the underlying pQCD
coupling in the considered low-momenta regime Nf = 3; we use for this parameter the widely used αs(M

2
Z ; MS)

(at Nf = 5). In the constructed framework, we varied in practice, within the relatively narrow phenomenologically

allowed intervals, the values of αs(M
2
Z ; MS) and of the leading-twist (i.e., dimension zero, D = 0) contribution r

(D=0)
τ,th

of the semihadronic τ -decay ratio. As a result of the numerical implementation of the mentioned conditions, the
obtained parameters in the spectral function ρA(σ) turned out to be such that ρA(σ) = 0 for σ ≤ 0, i.e., the obtained
QCD coupling A(Q2) is free of Landau singularities.

We then applied the Borel-Laplace sum rules to the OPAL and ALEPH data of the (strangeless) semihadronic τ
decays [in the (V+A)-channel], in order to extract the condensate values of D = 4 and D = 6 condensates 〈OD〉V+A.

Some of the applied input parameter values of αs(M
2
Z ; MS) and r

(D=0)
τ,th did not give us good fit quality of the Borel-

Laplace sum rules, especially for the (more precise) ALEPH data. Furthermore, with the obtained values of the

condensates, we then compared the theoretical values of r
(D=0,σmax)
τ with the corresponding experimental values

(where σmax is the upper bound of squared energy of the spectral functions, different for OPAL and ALEPH data).

28 Except for the case of αs(M2
Z ; MS) = 0.1175 where r

(D=0)
τ,th = 0.1988 is at the maximally admissible value within four digits, i.e.,

r
(D=0)
τ,th = 0.1989 is already above the maximum value achievable in our 3δ AQCD framework at that value of αs(M2

Z ; MS).
29 We recall that the MM scheme is used in the large-volume lattice calculations of the Landau gauge gluon and ghost propagators [43, 44],

and the scheme is theoretically known at present up to the four-loop level [49–51].
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This rτ -consistency test acts as yet another filter for the acceptable range of the input parameter values αs(M
2
Z ; MS)

and r
(D=0)
τ,th of the A-coupling.

Such a construction and its evaluations have been performed already in our previous work [1]. But this time,
besides some refined numerical aspects [such as the five-loop RGE-evolution of a(Q2) from Q2 = M2

Z down to Nf = 3

regime], the main difference is that for the evaluation of the Adler function (needed in the calculation of r
(D=0)
τ,th and

of the Borel-Laplace sum rules) we now used a renormalon-motivated resummation [41], in contrast to Ref. [1] where
the truncated perturbation series (adjusted to the A-coupling formalism) was used. This aspect changes appreciably
the obtained numerical values of the parameters of A-coupling.

We finally evaluated the hadronic vacuum polarization (HVP) contribution to muon anomalous magnetic moment,

(gµ/2− 1)had(1) ≡ a
had(1)
µ , with our obtained coupling, which involves the Adler function in the V-channel. We used

the V-channel condensate values 〈OD〉V (D = 4, 6), obtained from the aforementioned values of the (V+A)-channel
condensates 〈OD〉V+A (which were obtained from Borel-Laplace sum rules) and the (V-A)-channel condensate value
〈O6〉V−A [88]. In the V-channel Adler function DV(Q2) we wrote the OPE D = 4, 6 contributions in a form which
involves the IR-regularizing masses MD (D = 4, 6), in order to apply the obtained DV(Q2) at very low Q2 ∼ m2

µ as

needed for the evaluation of a
had(1)
µ . These two masses MD are interrelated via the condition DV(0) = 0. Therefore,

the adjustment of the value of the massM2 can lead in general to the correct experimental value of a
had(1)
µ (≈ 7×10−8).

Since the masses MD reflect nonperturbative physics, we expect them to be around or below 1 GeV. We varied the

mentioned input parameters of the A-coupling, αs(M
2
Z ; MS) and r

(D=0)
τ,th , within the phenomenologically acceptable

range, and extracted the values of the IR-regularizing masses MD (D = 4, 6). It turned out that these two masses
were in the acceptable range 0 < MD < 1 GeV for narrow intervals of values of the A-coupling input parameters

αs(M
2
Z ; MS) and r

(D=0)
τ,th . In particular, the values of r

(D=0)
τ,th have to lie in a narrow interval around its possible

maximum (as allowed, at given value of αs(M
2
Z ; MS), by the construction of the A-coupling), namely those which

gave positive values of 〈O4〉V+A > 0 (and thus 〈O4〉V > 0).30

When we take into account, in addition to the mentioned condition 0 <MD < 1 GeV, also the requirements of
the acceptably good quality of fits in the Borel-Laplace sum rules and of the acceptable quality of the mentioned
rτ -consistency test, the described framework of A-coupling turns out to prefer the values of 0.1172 ≤ αs(M2

Z ; MS) ≤
0.1179, and, for such values of αs(M

2
Z ; MS), the values of r

(D=0)
τ,th close to the allowed maximal values, cf. Table VIII

and the discussion at the end of Sec. VI.
Ref. [96] represents a short version, which summarizes some of the main features of this work.
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Appendix A: Renormalon-motivated summation; the case of Adler function

The method [41] is based on the following observations. We consider a spacelike physical observable D(Q2) whose
perturbation expansion is written in two (equivalent) ways, cf. Eqs. (19)

Dpt(Q
2) = a(κQ2) +

∞∑
n=1

dn(κ)a(κQ2)n+1 (A1a)

= a(κQ2) +

∞∑
n=1

d̃n(κ)ãn+1(κQ2), (A1b)

where Q2 is the physical spacelike scale of the process, and κ is the renormalization scale parameter (κ ∼ 1), i.e.,

µ2 = κQ2 is the renormalization scale. The logarithmic derivatives ãn+1 and the coefficients d̃n of the “reorganized”
series (A1b) are given in Eqs. (20) and (22), respectively.31 In the series Eq. (A1b) of D in logarithmic derivatives,

30 These correspond also to positive value of the gluon condensate, 〈aGG〉 > 0.
31 The coefficients km(p) and k̃m(p) in Eqs. (21)-(22) are independent of any scale, i.e., independent of Q2 and independent of κ. Thus,

for example: d̃n(κ) = dn(κ) +
∑n−1
s=1 k̃(n+ 1− s) dn−s(κ).



27

we replace the logarithmic derivatives ãn+1 by the powers an+1, and obtain thus an auxiliary quantity D̃

D̃(Q2;κ) ≡ a(κQ2) +

∞∑
n=1

d̃n(κ)a(κQ2)n+1. (A2)

This quantity is renormalization scale dependent (κ-dependent) at the level beyond one-loop (at the one-loop level,

we have ãn+1 = an+1, and D̃ then coincides with D). It si possible to show [41] that the Borel transform B[D̃](u;κ)

of D̃

B[D̃](u;κ) ≡ 1 +

∞∑
n=1

d̃n(κ)

n!βn0
un (A3)

has a simple κ-dependence

B[D̃](u;κ) = κuB[D̃](u), . (A4)

This dependence is exact, and is equal to the one-loop level (or: large-β0 level) κ-dependence of Borel transforms of
QCD observables such as B[D](u;κ) [the full κ-dependence of B[D](u;κ) is more complicated].

This indicates strongly that the structure of Borel transforms B[D̃](u) is the same as, or very similar to, the simple
structure of the large-β0 (LB) Borel transform B[D](u;κ)(LB) of the observable D, i.e., its renormalon poles are simple
or multiple poles: 1/(p − u)np , 1/(p + u)mp (np,mp = 1, 2, . . .). In addition, the limiting “zero” multiplicity poles

ln(1∓ u/p) can be included in B[D̃](u) (corresponding to np → 0 or mp → 0).

It was shown numerically in [41] that such (simple) structures of B[D̃](u) then imply for B[D](u) the theoretically
expected renormalon structures of the poles with specific fractional (noninteger) multiplicities 1/(p − u)γ̃p+np−k,
1/(p+ u)γp+mp−k, where: γ̃p = 1 + pβ1/β

2
0 , γp = 1− pβ1/β

2
0 , and k = 1, 2, . . ..

For the massless Adler function D(Q2) = d(D=0)(Q
2), discussed in Sec. II, the large-β0 (LB) Borel transform

B[d](u)(LB) was calculated in the literature [92–94], and has the IR renormalon poles at u = 2 (p = 2, simple pole
np = 1), u = 3 (p = 3, double pole np = 2), etc.; the UV renormalon poles are at u = −1 (p = 1, double pole mp = 2),

u = −2 (p = 2, mp = 2), etc. This then suggests that we can write down for the Borel transform B[d̃](u) of the

auxiliary (to Adler) quantity d̃(Q2;κ)(D=0) the following ansatz

B[d̃](u)(4P) = exp
(
K̃u
)
π
{
d̃IR

2,1

[
1

(2− u)
+ α̃(−1) ln

(
1− u

2

)]
+

d̃IR
3,2

(3− u)2
+

d̃UV
1,2

(1 + u)2

}
, (A5)

which has four adjustable parameters: the renormalon residue parameters d̃IR
2,1, d̃IR

3,2, d̃UV
1,2 and the “scaling” parameter32

K̃. As we see, the ansatz (A5) contains information about the three leading renormalons (at u = 2, 3;−1). It turns
out that the parameter α̃ in Eq. (A5) is not free, but is determined by the knowledge of a subleading coefficient of
the p = 2 IR renormalon of the Adler function [41]. The four mentioned parameters are fixed by the knowledge of the
first four coefficients in the perturbation expansion of the Adler function (19). In the LMM scheme, this then yields
the values of the parameters as given after Eq. (27) (cf. also Table V of Ref. [41]). When transformed into the MS
scheme, the obtained result then gives d4(MS) = 338.2.

Once the parameters of the Borel transform B[D̃](u)(4P) of the auxiliary quantity (A2) are fixed (in a chosen

scheme), this generates all the higher-order coefficients d̃n (and thus dn) (n = 4, 5, . . .) of the perturbation series
(A1). In principle, this could be regarded as sufficient to evaluate the perturbation series (A1) or its AQCD analog as
explained in Eqs. (24)-(25). However, these series are asymptotically divergent [even in the AQCD version Eq. (25)],

due to factorial divergence of the coefficients d̃n ∼ n! at large n. Nevertheless, the summation with the generated

coefficients d̃n can be performed, in terms of an integral which involves the coupling and a characteristic function
FD(t)

Dres.(Q
2) =

∫ +∞

0

dt

t
FD(t)a(tQ2). (A6)

32 Note that, according to Eq. (A4), the factor exp(K̃u) corresponds to a change of the renormalization scale µ2
new = µ2

old exp(K̃).
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It turns out that the characteristic function FD(t) exists and it is the inverse Mellin transform of the Borel transform

B[D̃](u) of the mentioned auxiliary quantity D̃

FD(t) =
1

2πi

∫ u0+i∞

u0−i∞
duB[D̃](u)tu, (A7)

where u0 is any real value for which the Mellin transform

B[D̃](u) =

∫ +∞

0

dt

t
FD(t)t−u (A8)

exists. For the specific case of the Adler function d(Q2)(D=0), the integrals in the inverse Mellin (A7) of B[d̃](u) [see
Eq. (A5)] can be explicitly evaluated and yield for the corresponding characteristic function the result Eqs. (27), with
the resummation of the type of (A6) given in Eq. (26) in Sec. II. There, we also explained that in pQCD for Q2 > 0
there is an ambiguity of evaluation of such a resummation, but that in AQCD the corresponding evaluation Eq. (28)

is without ambiguities if A(Q
′2) has no Landau singularities.

When we apply in the resummation (28) [or: (26)] the Taylor expansion of A(t exp(−K̃)Q2) around A(κQ2)

A(te−K̃Q2) = A(κQ2) +

∞∑
n=1

(−β0)n lnn
(
t

κ
e−K̃

)
Ãn+1(κQ2), (A9)

and exchange the summation and the integration, we can check that the resummation (28) can be written formally
as the expansion in logarithmic derivatives [cf. Eq. (25) for the truncated version]

d(Q2)AQCD
(D=0) = A(κQ2) +

∞∑
n=1

d̃n(κ) Ãn+1(κQ2), (A10)

with the coefficients d̃n(κ) as generated by the Borel transform B[d̃](u;κ)(4P) = κuB[d̃](u)(4P) where B[d̃](u)(4P) is

from Eq. (A5).33 This is so because it turns out that the obtained characteristic functions G
(±)
d (t) and G

(SL)
d (t) given

in Eqs. (27) fulfill the (necessary by construction) “sum rules”

d̃n(κ) = (−β0)n

{∫ 1

0

dt

t
G

(−)
d (t) lnn

(
t

κ
e−K̃

)
+

∫ +∞

1

dt

t
G

(+)
d (t) lnn

(
t

κ
e−K̃

)

+

∫ ∞
0

dt

t
G

(SL)
d (t)

[
lnn
(
t

κ
e−K̃

)
− lnn

(
1

κ
e−K̃

)]}
, (A11)

for n = 0, 1, 2, . . ..

It is interesting that the characteristic function FD (or: G
(±)
d and G

(SL)
d ) of the full leading-twist contribution

D(Q2) Eq. (A1) is the inverse Mellin of the Borel transform of the auxiliary quantity D̃(Q2;κ) Eq. (A2). On the

other hand, it is the Borel transform B[D̃](u) of the auxiliary quantity D̃ that is considerably simpler than the Borel
transform B[D](u) of the full quantity. These two aspects combine in a very beneficial way towards the construction of
the characteristic function and thus towards the described renormalon-motivated resummation of the spacelike QCD
observables.

We want to point out yet another interesting aspect of the described method: it leads to the resummation of the full

leading-twist quantity (and not just of the large-β0 part of it), because the coefficients d̃n contain the full information

of the leading-twist contribution D(Q2). This is despite the fact that the auxiliary quantity D̃ (which contains all

33 We recall that the series (A10) is asymptotically divergent, while the resummed form Eq. (28) is unambiguous and convergent (if A has
no Landau singularities).
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d̃n’s) behaves under the variation of the renormalization scale as a large-β0 part of an observable.34
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[55] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, “Five-loop running of the QCD coupling constant,” Phys. Rev. Lett. 118
(2017) no. 8, 082002 [arXiv:1606.08659 [hep-ph]].
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