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Abstract
In this thesis we studied the leptonic pion decays with intermediate on-shell (and off-shell)

neutrinos N into two electrons and a muon, π± → e±N → e±e±µ∓ν. We investigated the
branching ratios Br± = [Γ(π− → e−e−µ+ν) ± Γ(π+ → e+e+µ−ν)]/Γ(π− → all) and the CP
asymmetry ratio ACP = Br−/Br+ for such decays, in the scenario with two different on-
shell neutrinos Nj (j = 1, 2). If N is Dirac, only the lepton number conserving (LC) decays
contribute (LC: ν = νe or ν̄e); if N is Majorana, both LC and lepton number violating (LV)
decays contribute (LV: ν = νµ). Furthermore, we studied the CP violation in lepton number
violating semihadronic decays M± → `±1 `

±
2 M

′∓, where M and M
′

are pseudoscalar mesons,
M = K,D,Ds, B,Bc and M

′
= π,K,D,Ds, and the charged leptons are `1, `2 = e, µ. Our

calculations show that the asymmetry becomes largest when the masses of N1 and N2 are
almost degenerate, i.e., when the mass difference ∆MN becomes comparable with the (small)
decay widths ΓN of these neutrinos: ∆MN 6� ΓN . We showed that in such a case, the CP
asymmetry ratio ACP becomes a quantity ∼ 1. The observation of CP violation in these decays
would be consistent with the existence of the well-motivated νMSM model with two almost
degenerate heavy neutrinos in the mass range between MN ∼ 0.1-101 GeV.

Moreover, in the context of the semihadronic decays in particular (LV: B± → µ±e±π∓)
and (LC: B± → µ±e∓π±) we studied the possibilities to detect the effects of heavy neutrino
oscillation of the intermediated on-shell neutrinos. We pointed out that such decays may
present detectable effects of heavy neutrino oscillation, allowing us to extract the oscillation
length and thus the heavy neutrino mass difference ∆MN , as well as a CP-violating Majorana
phase.
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Chapter 1

Introduction

Neutrinos are one of the most enigmatic particles in the Standard Model (SM) and their history
goes back to 1930 when Wolfang Pauli proposed the existence of one undetectable particle [1] to
explain the non-conservation of the energy in beta decay (n→ p+ e−+ νe). This hypothetical
particle did not have electric charge and had a very small mass, could even be massless.
This fact leads to the name neutrino, which mean small neutron in Italian. Twenty-six years
after the Pauli prediction, Cowan and Reines [2] discovered the first neutrinos (actually they
discovered electron antineutrino νe) , produced in Savannah River nuclear power plant in South
Carolina, USA. These neutrinos were created in association with an electron and were detected
in the inverse beta decay in which an antineutrino interacts with an atomic nucleus and induces
the transformation of a proton into a neutron (νe + p→ n+ e+).

Six years later in 1962, Leon Max Lederman, Melvin Schwartz and Jack Steinberger discov-
ered a new type of neutrino [3], this time associated with the muon (the muon neutrino νµ).
Finally, in 2000 the DONUT collaboration in FERMILAB, found a neutrino associated with
the tau lepton (the tau neutrino ντ ).

Up to date we know that neutrinos are extremely abundant in the Universe and continually
pass through the Earth. They come from different sources such as fusion reactions in the
Sun, the interaction of cosmic rays with the atmosphere, radioactivity of the Earth and also
in nuclear power plant. It is believed that very low energy neutrinos from the Big Bang exist
in the Universe, although it has still not been possible to experimentally detect them in a
direct way. Since neutrinos hardly interact with matter, they are very difficult to detect.
Billions of neutrinos pass through our body every second without leaving a trace, but every
now and then one of them will end up interacting with an atom of our body. Current particle
detectors are not suited for directly detecting neutrinos because the latter are not sensitive
to the electromagnetic field. However, neutrinos can interact (be absorbed) with a nucleon
producing a charged lepton, or scatter from an electron. In both cases, the products can be
detected.

Toward the end of the 20th century, a deficit was observed with respect to the predictions
in the flux of electron neutrinos coming from the Sun and in the muon neutrinos produced in
the atmosphere, this was a mystery that lasted 30 years. The disappearance of neutrinos was
verified much later in neutrinos produced in nuclear reactors and particle accelerators. The
result could be explained by the phenomenon that today we call oscillations [4–7].
Oscillation means that a neutrino created with a specific lepton flavor (e, µ or τ) can later
be measured having a different flavor, this was experimentally demonstrated for the first time
by the Super-Kamiokande (SK) experiment. This detector, a 50,000 ton water tank located
1000 m underground in a mine in Japan, was able to demonstrate that atmospheric neutrinos
on their way through the Earth, are transformed from muon neutrinos into tau neutrinos. SK
measured a deficit of muon neutrinos with respect to those expected based on the distance
traveled and the neutrino energy, unambiguously proving that neutrinos oscillate. This ca-
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1. Introduction

pacity of transmutation between families of neutrinos is only possible, according to quantum
mechanics, if neutrinos are massive particles, but it is in contradiction with the Standard Model
(SM), which assumes that neutrinos are massless. Neutrino masses are smaller than 1 eV. If
these light masses are produced via a seesaw [8–11] or related mechanism, then the existence
of significantly heavier neutrinos is expected.

Neutrinos are detected via weak interactions and in these participate the neutrinos νe, νµ
and ντ , called flavor eigenstates and they are not mass eigenstates. Any measurement that
involves neutrinos is quite complicated, but the measurement of their masses is perhaps the
hardest, because they have extremely small masses.

In oscillation experiments it is not possible to get information about the absolute value of
neutrino mass since the probability of one type of neutrino oscillating to another is a function
of the difference between their squared masses. The effects of the neutrino mass itself can be
observed in phenomena such as weak nuclear and particle decays, in which the energy and
momentum of the decay products depend on the neutrino mass. These methods are called
direct, because the only physical requirement is that the neutrino has finite mass; up to now
they have only managed to set upper limits on the neutrino mass. On the other hand, there are
various other experiments that can indirectly get information of neutrinos since the amplitude
of their process depends on the value of the neutrino mass and also on the other properties
that are not predicted by the SM. The most promising are the neutrinoless double beta decay
(0νββ) [12–19], and rare meson decays [20–27], in most cases these processes are possible if
the neutrino is a Majorana particle (i.e., if neutrino and antineutrino are the same particle),
it is still unknown whether neutrinos are Majorana (ν = ν) or Dirac particles (ν 6= ν).

Among the principal tasks in neutrino physics are the ascertainment of the nature of the
neutrino mass (Dirac or Majorana) and the CP violation in the neutrino sector. If neutrinos
are Dirac particles, they must have right-handed electroweak singlet components in addition
to the known left-handed νe, νµ and ντ ; in such case lepton number remains as a conserved
quantity. Alternatively, if they are Majorana particles (as required for 0νββ and semihadronic
rare meson decay), the lepton number in the reactions involving them may be violated. There
is a possibility of CP violation in the neutrino sector, both if neutrinos are Dirac or Majorana
particles CP violations in the neutrino sector is important for baryon number asymmetry of
the universe.

In this thesis, we investigate the possibility of measuring the CP asymmetry in decays
of pseudo-scalar mesons (π,K,D,Ds, B,Bc). The CP violation in the neutrino sector can
be measured by neutrino oscillations [28]. However, here we consider a scenario in which CP
violation of the neutrino sector can be measured by investigating rare meson decays, i.e; decays
mediated by (on-shell) neutrino exchange.
We consider scenarios that include two additional, sterile, almost degenerate neutrinos Nj

(j = 1, 2) with masses in the range MN ∼ 0.1 − 6 GeV. Such neutrinos are predicted in low
scale seesaw scenarios [29–31].

We note that the model νMSM [29–31] proposes two almost degenerate Majorana neutrinos
with mass between 100 MeV and a few GeV, in addition to a light Majorana neutrino of mass
∼ 102 keV. The existence of such neutrinos with CP violation is strongly significant, because it
can explain simultaneously the baryon asymmetry of the Universe, the pattern of light neutrino
masses and oscillations, and can provide a dark matter candidate, cf. Ref [32–34] for a review.
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The requirement that the lightest sterile neutrino be the dark matter candidate reduces the
parameters of the model in such a way as to make the two heavier neutrinos nearly degenerate
in mass. Recently CERN-SPS has proposed a search of such heavy neutrinos, Ref. [35], in the
decays of Ds mesons. We are interested in the question if in such models the CP violation can
be detected in rare mesons decays and if it cover the parameter space favored by theoretical
models.

We investigated the possibility of measuring the CP asymmetry in the rare leptonic decays
of charged pions π± → e±e±µ∓ν and in rare semihadronic decays of charged pseudoscalar
mesons M± → `±1 `

±
2 M

′∓, where M = K,D,Ds, B,Bc and M
′

= π,K,D,Ds, and the charged
leptons are `1, `2 = e, µ. We focus on signals of CP violation in such processes, working in
scenarios with two on-shell sterile neutrinos N1 and N2.

In the leptonic decay the relevant processes are the lepton number conserving (LC) processes
π± → e±Nj → e±e±µ∓ν where ν = νe for π+ and ν = ν̄e for π−; and the lepton number
violating (LV) processes, where ν = νµ if the Nj neutrinos are Dirac, only LC decays contribute;
if they are Majorana, both LC and LV decays contribute. In the rare semihadronic decays only
the lepton number violating (LNV) processes take part, thererefore, the neutrinos mediating
them must be of Majorana type.

In Chapter 2 we present the relevant formulas and concepts which are used in this thesis.
In Chapter 3 we outline the formalism and results of the calculation of the various leptonic
decay widths, branching ratios and CP asymmetries. The details of the calculation are given
in Appendices A and D. In Chapter 4 we present the same analysis as in Chapter 3, but
this time for rare semihadronic decays adding estimation of the possibilities to detect the CP
asymmetries in future experiments as SHiP [36], and the details of the calculation are given in
Appendix E. In Chapter 5 we discuss neutrino oscillations in semihadronics decays of heavy
pseudoscalar mesons (such as B, BC , DS) mediated by two on-shell Majorana neutrinos, and in
Appendix F we show the consistency of the oscillation amplitude method applied. In Chapter 6
we summarize the conclusions of this thesis.
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Chapter 2

Some Useful Remarks About
Majorana and Dirac Neutrinos.

In this chapter we shall present some relevant and useful definitions which we shall use in this
thesis. Some points that we shall present here have not a fundamental role in neutrino physics,
but are very helpful to improve our understanding about it and the processes involved in it.

2.1 Dirac and Majorana Fields

To understand the differences between the Dirac and Majorana particles it is instructive to
look at the expansion of their quantum field in terms of the plane-wave modes. For a Dirac
field the expansion has the form [37]:

ψ(x)D =

∫
d3p

(2π)3
√

2Ep

∑
s=± 1

2

[
bs(p)us(p)e−ipx + d†s(p)vs(p)eipx

]
(2.1)

where us(p) and vs(p) are the positive and negative energy solutions of the Dirac equation
in the momentum space, respectively. The operators bs(p) and d†s(p) are the annihilation
operator for the particle and the creation operator for the antiparticle, respectively.
Majorana fields have to satisfy an extra contidion, given by:

(ψ(x)M)c = ψ(x)M (2.2)

If we impose the condition (2.2) in Eq. (2.1), we get a Majorana field:

ψ(x)M =

∫
d3p

(2π)3
√

2Ep

∑
s=± 1

2

[
bs(p)us(p)e−ipx + b†s(p)vs(p)eipx

]
(2.3)

Comparing Eqs. (2.1) and (2.3), we see that, while in the Dirac field the difference between
particle and anti-particle is present, this difference dissapears in the Majorana case.

Eqs. (2.1) and (2.3) are presented sometimes with a phase factor λ in front of the creation
operators [38]. Here we choose λ = 1, as in [39].

Jilberto Antonio Zamora Saá 5



2. Some Useful Remarks

2.2 Neutrino Mixing Matrix

Neutrino oscillation leads to the conclusion that neutrinos are massive particles. Furthermore,
in the electroweak interaction (SM interaction lagrangian) participate flavor states (νe, νµ, ντ )
which are mixtures of left-handed components of the neutrino fields with definite masses (νi).
Some extensions [29–34] of the SM include sterile neutrinos (N`) which have no interaction
with charged leptons of SM.
As a result, we have additional neutrinos (Nk) which have a definite (higher) mass and are
mostly made of sterile neutrinos (N`). Then the usual neutrino flavor fields ν` (` = e, µ, τ) are:

ν` =
3∑
i=1

B`νiνi + (B`N1N1 +B`N2N2 + ...+B`NkNk + ...+B`NnNn) , (2.4)

where νi (i = 1, 2, 3) are the light mass eigenstates, Nk are the heavier mass eigenstates, and
the (unitary) PMNS matrix B is in this scenario a (3 + n)× (3 + n) matrix.

The B matrix is unitary and the number of its independent parameters depends on the
neutrino nature (Dirac or Majorana) [39]. We can divide the parameters in two categories,
”real parameters” or angles, and ”complex parameters” or phases. While the angles do not
depend on the neutrino nature, the phases do.

The number nθ of angles in a (ω × ω) B matrix is:

nθ =
ω(ω − 1)

2
(2.5)

The number of physical phases nφ in a (ω × ω) B matrix are; for the case of Dirac and
Majorana neutrinos, respectively

nDφ =
(ω − 1)(ω − 2)

2
; nMφ =

ω(ω − 1)

2
(2.6)

In this thesis we are interested in the case when at least two sterile neutrinos are added.
Then, our relevant electroweak flavor states are

ν` =
3∑

k=1

B`νkνk + (B`N1N1 +B`N2N2) , (2.7)

where B`νk is the PMNS mixing matrix [40]. We shall refer here even to the extended B matrix
(with BeN1, BeN2) as the PMNS mixing matrix.

As a final comment, we mention that B matrix is an object of central interest for theoreti-
cians and experimentalist, because it is a source of CP violation in the neutrino sector and
it is the responsable for the strong suppression in the interaction between active and sterile
neutrinos.

6



2.3. Neutrinos and Neutral Current Interaction

2.3 Neutrinos and Neutral Current Interaction

In the standard model (SM), neutrinos interact by means of weak interaction. While the
charged current (CCI) can distinguish the nature of neutrinos, the neutral current interaction
(NCI) can not distinguish between Majorana and Dirac neutrinos (in the relativistic limit). In
this section we shall explain why, and we shall present a example to clarify this fact.

As we know, neutrinos are fermions and any fermion fields anticommute:

νγµν = −νcγµνc (2.8)

The Equation (2.8) is valid for Dirac and Majorana fermions (e.g. the vector current of
positron is opposite to the vector current of electron). As we wrote in Eq. (2.2), Majorana
particle must satisfy the condition (νM)c = νM , therefore Eq. (2.8) has an inconsistency unless

νMγµν
M = 0. This fact means: The vector current of a Majorana fermion is zero.

The only contribution of a Majorana neutrino to the NCI is the axial-vector current νMγµγ5ν
M .

In order to get the matrix elements, we have to perform the Wick contraction between NCI
νMγµγ5ν

M and the final and initial states |νMf 〉 , |νMi 〉, respectively.

〈νMf |νMγµγ5ν
M |νMi 〉 = −2 ufγµγ5ui (2.9)

Majorana neutrinos can be contracted with both initial and final states; for this reason we
have a factor two in front of Eq. (2.9).

Besides, the matrix elements for Dirac neutrinos is:

〈νDf |νDγµ(1− γ5)νD|νDi 〉 = ufγµ(1− γ5)ui (2.10)

From quantum field theory we know that massive neutrinos (fermions) [37] obey :

γ5 ν = h ν +O
(
Mν

Eν

)
ν, (2.11)

where h is the helicity operator. In a neutrino experiment, the neutrino beam is left-handed
(h ν = −ν) [38] and relativistic (Mν

Eν
→ 0) , therefore, the second term at the right side in

Eq. (2.11) disappears and this leads to:

− 2 ufγµγ5ui = ufγµ(1− γ5)ui (2.12)

Equation (2.12) shows that there is no difference between the neutral current matrix ele-
ments for Majorana and Dirac neutrino in the relativistic limit.

7



2. Some Useful Remarks

2.3.1 A Short Exanple: The Neutrino Decay

Here we shall present a short example where Eqs. (2.9) and (2.10) manifest themselves in the
relativistic limit.
We are interested in the neutrino (Dirac or Majorana) decay mediated by Z boson, as shown
in figure 2.1.

Figure 2.1: Feynman Diagram for Netrino (N) Decay into three light neutrinos (νl), mediated by Z Boson.

The differential of the decay width in the neutrino (N) rest frame, is given by:

dΓ =
1

2MN

(∏
f

d3pf
(2π)32Ef

(2π)4|Mfi|2 δ4(PN −
∑

pf )

)
, (2.13)

where MN is the neutrino mass, |Mfi|2 is the square of the reduce matrix element, and Ef are
the energies of the final state particles.

Majorana Neutrino Decay

In order to obtain the decay width, we have to divide the problem in two scenarios:

• Scenario 1, when l1 = l2: this provide a symmetry factor 1/3! in front of the decay width,
because we cannot distinguish between the frees neutrinos and anti-neutrinos in the final
state.

• Scenario 2, when l1 6= l2: this provide a symmetry factor 1/2! in front of the decay width,
here we can distinguish the flavors, but we can’t distinguish neutrino and anti-neutrino.

Taking into account both scenarios, we get a general expresion for the decay width:

8



2.3. Neutrinos and Neutral Current Interaction

ΓM(N → νl1νl2νl2) =
1

3!
ΓM(N → νeνeνe) +

1

2!
ΓM(N → νeνµνµ) +

1

2!
ΓM(N → νeντντ )

+
1

2!
ΓM(N → νµνeνe) +

1

3!
ΓM(N → νµνµνµ) +

1

2!
ΓM(N → νµντντ )

+
1

2!
ΓM(N → ντνeνe) +

1

2!
ΓM(N → ντνµνµ) +

1

3!
ΓM(N → ντντντ )

(2.14)

Taking into account the relativistic limit (mνe = mνµ = mντ = 0), we get for the partial
decay width:

ΓM(l1 6=l2) = |BlN |2
G2
FM

5
N

192π3
; ΓM(l1=l2) = |BlN |2

G2
FM

5
N

32π3
, (2.15)

where GF is the Fermi constant and BlN is the mixing between active and sterile neutrino
presented in Eq. (2.7). Finally the total decay width for a Majorana neutrino, is given by:

ΓM(N → νl1νl2νl2) =
∑
l=e,µ,τ

|BlN |2
G2
FM

5
N

96π3
(2.16)

Dirac Neutrino Decay

In the Dirac neutrino decay we shall divide the problem in two scenarios, again, but this time
we shall have some differences with the Majorana neutrino case:

• Scenario 1, when l1 = l2: this provide a symmetry factor 1/2! in front of the decay width,
for Dirac particle we can distinguish between neutrino and anti-neutrino, so we have a
symmetry factor only due to l1 = l2.

• Scenario 2, when l1 6= l2: we don’t have a symmetry factor.

Taking into account both scenarios, we get a general expresion for the decay width:

ΓD(N → νl1νl2νl2) =
1

2!
ΓD(N → νeνeνe) + ΓD(N → νeνµνµ) + ΓD(N → νeντντ )

+ ΓD(N → νµνeνe) +
1

2!
ΓD(N → νµνµνµ) + ΓD(N → νµντντ )

+ ΓD(N → ντνeνe) + ΓD(N → ντνµνµ) +
1

2!
ΓD(N → ντντντ )

(2.17)

9



2. Some Useful Remarks

In the relativistic limit (mνe = mνµ = mντ = 0), we get, this time for Dirac neutrinos:

ΓD(l16=l2) = |BlN |2
G2
FM

5
N

384π3
; ΓD(l1=l2) = |BlN |2

G2
FM

5
N

96π3
(2.18)

therefore, the total decay width for a Dirac neutrino, is given by:

ΓD(N → νl1νl2νl2) =
∑
l=e,µ,τ

|BlN |2
G2
FM

5
N

96π3
(2.19)

We see that there are no differences between Eqs (2.16) and (2.19), this is a clear manifestation
of the aspects discussed in Sec.2.3 in Eq. (2.12).

10



Chapter 3

The Rare π±→ e±e±µ∓ν
Leptonic Decay

We shall consider first the rare pion decay π+ → e+e+µ−νe mediated by exchange of neutri-
nos, with a view to construct a CP-violating asymmetry involving this decay and its charge-
conjugate partner decay π− → e−e−µ+νe.

The rare leptonic pion decay π+ → e+e+µ−νe happens by means of two different diagrams
(t-channel and s-channel). The literature [41] show that the t-channel is in general suppressed
by an order of magnitude, due to this fact we shall concentrate only on the s-channel. This
Section is based mainly on our work [42] (see also [43])

Further, if the exchange neutrino in the s-channel is on-shell, this channel dominates over
the t-channel by many orders of magnitude. The process can occur via a Majorana neutrino,
violating the lepton number (LV) by two units (∆l = 2) or via a Dirac neutrino conserving
the lepton number (LC), but violating the lepton flavor. The s-channel has two contributions,
these contributions are: direct-channel and crossed-channel.

Figure 3.1: Direct Channel of (LV)
Decay

Figure 3.2: Crossed Channel of (LV)
Decay

Figure 3.3: Direct Channel of (LC) De-
cay

Figure 3.4: Crossed Channel of (LC) De-
cay

In this chapter we shall study an extensive range [0.01-6.3] GeV of neutrino mass, passing
through off-shell and on-shell regions.

Jilberto Antonio Zamora Saá 11



3. The Rare π± → e±e±µ∓ν Decay

3.1 The Formalism for the rare leptonic pion decay

First we present the formalism for the decays π+ → e+e+µ−ν where the intermediate neutrinos
can be on-shell or off-shell.

In order to keep an easy notation from now on, unless otherwise stated, we shall use the
simplified notations of some relevant parameters, involved in this rare decay:

Γ(X)(π±) ≡ Γ(X)(π± → e±e±µ∓ν) , (X = LNV = LV; X = LNC = LC) . (3.1)

The decay widths Γ(X)(π±) can be written in the form

Γ(X)(π±) =
1

2!

1

2Mπ

1

(2π)8

∫
d4 |T (X)(π±)|2 , (3.2)

where 1/2! is the symmetry factor due to two final state electrons, and d4 denotes the integration
over the 4-particle final phase space.

d4 =

(
2∏
j=1

d3~pj
2Ee(~pj)

)
d3~pµ

2Eµ(~pµ)

d3~pν
2|~pν |

δ(4) (pπ − p1 − p2 − pµ − pν) , (3.3)

and we denoted by p1 and p2 the momenta of e± from the left and the right vertex of the
direct channels, respectively (and for the crossed channels just the opposite). The squared
matrix element |T (X)(π±)|2 in Eq. (3.2) is a combination of contributions from N1, N2, ..., Nn

(n: number of sterile neutrinos) and from the two channels D (direct) and C (crossed).

|T (X)(π+)|2 = K2
π

n∑
i=1

n∑
j=1

k
(X)∗
i k

(X)
j

×
[
P

(X)
i (D)P

(X)
j (D)∗T (X)(DD∗) + P

(X)
i (C)P

(X)
j (C)∗T (X)(CC∗)

+
(
P

(X)
i (D)P

(X)
j (C)∗T

(X)
+ (DC∗) + P

(X)
i (C)P

(X)
j (D)∗T

(X)
+ (CD∗)

)]
, (3.4a)

|T (X)(π−)|2 = K2
π

n∑
i=1

n∑
j=1

k
(X)
i k

(X)∗
j

×
[
P

(X)
i (D)P

(X)
j (D)∗T (X)(DD∗) + P

(X)
i (C)P

(X)
j (C)∗T (X)(CC∗)

+
(
P

(X)
i (D)P

(X)
j (C)∗T

(X)
− (DC∗) + P

(X)
i (C)P

(X)
j (D)∗T

(X)
− (CD∗)

)]
, (3.4b)

where

K2
π = G4

Ff
2
π |Vud|2 ≈ 2.983× 10−22 GeV−6 , (3.5)

and we have used the following notation for the Nj propagators of the direct and crossed

12



3.1. Process and formalism

channels:

P
(LC)
j (D) =

1[
(pπ − p1)2 −M2

Nj
+ iΓNjMNj

] , P (LV )
j (D) = MNjP

(LC)
j (D), (3.6a)

P
(LC)
j (C) =

1[
(pπ − p2)2 −M2

Nj
+ iΓNjMNj

] , P (LV )
j (C) = MNjP

(LC)
j (C), (3.6b)

and k
(X)
j represent the combinations of the corresponding heavy-light mixing elements pre-

sented in (2.7):

k
(LV )
j = B2

eNj
, k

(LC)
j = BeNjB

∗
µNj

. (3.7)

The expressions for the direct (DD∗), crossed (CC∗) and direct-crossed interference (DC∗,
CD∗) elements [T (X)(DD∗), T (X)(CC∗), T (X)(DC∗), T (X)(CD∗)] appearing in Eqs. (3.4) are
given in Appendix A.

Combining Eqs. (3.2) and (3.4), we obtain

Γ(X)(π+) =
n∑
i=1

n∑
j=1

k
(X)∗
i k

(X)
j

[
Γ̃(X)(DD∗)ij + Γ̃(X)(CC∗)ij

+Γ̃
(X)
+ (DC∗)ij +

(
Γ̃

(X)
+ (DC∗)ji

)∗ ]
, (3.8a)

Γ(X)(π−) =
n∑
i=1

n∑
j=1

k
(X)
i k

(X)∗
j

[
Γ̃(X)(DD∗)ij + Γ̃(X)(CC∗)ij

+Γ̃
(X)
− (DC∗)ij +

(
Γ̃

(X)
− (DC∗)ji

)∗ ]
, (3.8b)

Here we denoted the elements Γ(X)(Y Z∗)ij (i, j = 1, 2, ..., n) of the decay width matrices
Γ(X)(Y Z∗) (X = LV, LC; Y, Z = D,C) as

Γ̃(X)(DD∗)ij = K2
π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(X)
i (D)P

(X)
j (D)∗ T (X)(DD∗) , (3.9a)

Γ̃(X)(CC∗)ij = K2
π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(X)
i (C)P

(X)
j (C)∗ T (X)(CC∗) , (3.9b)

Γ̃+

(X)
(DC∗)ij = K2

π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(X)
i (D)P

(X)
j (C)∗ T

(X)
+ (DC∗) , (3.9c)

Γ̃−
(X)

(DC∗)ij = K2
π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(X)
i (D)P

(X)
j (C)∗ T

(X)
− (DC∗) , (3.9d)

On the basis of these expressions, and the expressions in Appendix A, we can see that the
following symmetry relations hold between the elements of the decay width matrices:

Γ̃(X)(DD∗)ij = Γ̃(X)(CC∗)ij , Γ̃(X)(DD∗)ji =
(

Γ̃(X)(DD∗)ij

)∗
, (3.10a)

Γ̃(X)(CD∗)ij = Γ̃(X)(DC∗)ji =
(

Γ̃(X)(CD∗)ji

)∗
. (3.10b)

13



3. The Rare π± → e±e±µ∓ν Decay

The branching ratios are obtained by dividing the decay widths Γ(X)(Y Z∗) = k
(X)∗
i k

(X)
j Γ̃X(Y Z∗)

(X = LV, LC; Y, Z = D,C) by the total decay width of the charged pion Γ(π+ → all)

Br(X)(Y Z∗) =
Γ(X)(Y Z∗)

Γ(π+ → all)
=
k

(X)∗
i k

(X)
j Γ̃X(Y Z∗)

Γ(π+ → all)
(3.11)

where

Γ(π+ → all) = 2.529× 10−17 GeV ≈ 1

8π
G2
Ff

2
πM

2
µMπ|Vud|2

(
1−

M2
µ

M2
π

)2

. (3.12)

Another important quantity in the evaluations of Γ(X)(Y Z∗) and Br(X)(Y Z∗) is the total decay
width ΓNj of the intermediate on-shell neutrinos, which for the mass range of interest can be
approximated in the following way:

ΓMa
Nj
≈ K̃Ma

j Γ(MNj) , ΓDiNj ≈ K̃
Di
j Γ(MNj) (3.13)

where

Γ(MNj) ≡
G2
FM

5
Nj

96π3
, (3.14)

Γ
(Ma)
Nj

was defined for Majorana neutrinos, and Γ
(Di)
Nj

for Dirac neutrinos.

From now on, all parameter with over-bar represent a quantity without any mixing, depen-
dence, as in Eqs. (3.14).

The factor K̃Tj (T = Di,Ma), includes the heavy-light mixing factors dependence, from all
charged channels and all neutral channels mediated by W± and Z bosons, respectively.

We define the factor K̃Tj , as:

K̃Tj (MNj) ≡ K̃Tj = N T
eNj
|BeNj |2 +N T

µNj
|BµNj |2 +N T

τNj
|BτNj |2) , (j = 1, ..., n) . (3.15)

Here, N`N(MN) ≡ N`N (` = e, µ, τ) are the effective mixing coefficients; they are numbers
∼ 100-101 which depend on the mass MN (N = N1, N2, ..., Nn) and the nature of the mass
term (Dirac or Majorana).

In Appendix B we write down the relevant formulas for the calculation of these coefficients.
The results of these calculations are given in Figs. 3.5 and 3.6 , for the relevant neutrino mass
interval 0.01 GeV < MN < 0.5 GeV.
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3.1. Process and formalism
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Figure 3.5: The effective mixing coefficients N (LV )
`N (` = e, µ, τ), as a function of the mass MN of the

Majorana neutrino N .
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Figure 3.6: The effective mixing coefficients N (LC)
`N (` = e, µ, τ), as a function of the mass MN of the Dirac

neutrino N .

By comparison between Fig. 3.5 and Fig. 3.6, we can infer:
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3. The Rare π± → e±e±µ∓ν Decay

1. There are no differences between K̃Ma and K̃Di in [0− 0.140] GeV mass range. This fact
is due to the fact that only the neutral current contribution (N → νl1νl2νl2) contributes
in this mass range, and as we have seen in section 2.3 there are no differences between
Dirac and Majorana neutrinos in this decay.

2. The charged current contribution is the clearly dominant contribution to K̃(T ) for
MN > 200 MeV.

3.2 π+ → e+e+µ−νe via one intermediate neutrino

At this point we are interested in determining the branching ratio for π+ → e+e+µ−νe via
one intermediate neutrino (n = 1) in a MN1 mass range [0.01-6.3] GeV. In order to get the
branching ratio, we can divide the MN1 mass range in two regions: on-shell and off-shell mass
region.

For a scenario with n = 1 (one intermediate neutrino) Eqs. (3.9) adopt the following form:

Γ̃(LV )(DD∗)11 = K2
π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(LV )
1 (D)P

(LV )
1 (D)∗ T (LV )(DD∗) , (3.16a)

Γ̃(LV )(CC∗)11 = K2
π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(LV )
1 (C)P

(LV )
1 (C)∗ T (LV )(CC∗) , (3.16b)

Γ̃(LV )(DC∗)11 = K2
π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(LV )
1 (D)P

(LV )
1 (C)∗ T

(LV )
+ (DC∗) , (3.16c)

here: T (LV )(DD∗), T (LV )(CC∗) and T (LV )(DC∗) are given in Apendix A.

3.2.1 π+ → e+e+µ−νe via one on-shell neutrino

In order to have analitical expresion of Γ(LV )(DD∗) and Γ(LV )(CC∗), and taking into
account the limit ΓN1 → +0, (ΓN1 � MN1), we can approximate the propagator in on-shell
(0.106 GeV < MN1 < 0.139 GeV) MN1 mass range through the narrow width approximation:

P (LV )(D)P (LV )(D)∗ =

∣∣∣∣ MN1

[(pπ − p1)2 −M2
N1 + iΓN1MN1]

∣∣∣∣2 ≈ π

ΓN1
δ
(
(pπ − p1)2 −M2

N1

)
(3.17a)

P (LV )(C)P (LV )(C)∗ =

∣∣∣∣ MN1

[(pπ − p2)2 −M2
N1 + iΓN1MN1]

∣∣∣∣2 ≈ π

ΓN1
δ
(
(pπ − p2)2 −M2

N1

)
(3.17b)

P (LC)(D)P (LC)(D)∗ =

∣∣∣∣ 1

[(pπ − p1)2 −M2
N1 + iΓN1MN1]

∣∣∣∣2 ≈ π

ΓN1MN1
δ
(
(pπ − p1)2 −M2

N1

)
(3.18a)

P (LC)(C)P (LC)(C)∗ =

∣∣∣∣ 1

[(pπ − p2)2 −M2
N1 + iΓN1MN1]

∣∣∣∣2 ≈ π

ΓN1MN1
δ
(
(pπ − p2)2 −M2

N1

)
(3.18b)

Here wee see that the most important on-shell efect is reflected in the on-shell ”amplification”
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3.2. π+ → e+e+µ−νe via one intermediate neutrino

factor ((1/ΓN1) ∝ (1/K̃1). It turns out that in the on-shell MN1 mass region the D-C interfer-
ence contributions are negligible. Therefore, and taking into account the symmetry relations
in Eq. (3.10), the resulting decay widths Γ(LV )(π+) and Γ(LC)(π+) are:

Γ(LV )(π+) = 2|BeN1|4 Γ̃(LV )(DD∗)11

(3.19a)

Γ(LC)(π+) = 2|BeN1|2|BµN1|2 Γ̃(LC)(DD∗)11 (3.19b)

Where Γ̃
(LV )
11 and Γ̃

(LC)
11 are given by:

Γ̃(LV )(DD∗)11 =
Γ(DD∗)11

K̃Ma
1

; Γ̃(LC)(DD∗)11 =
Γ(DD∗)11

K̃Di1

(3.20)

Here Γ(DD∗)11 is the canonical (without mixing factors) decay width and its general expresion
is given by:

Γ(DD∗)jj = =
K2
π

192(2π)4

M11
Nj

M3
π ΓNj

λ1/2(xπj, 1, xej)

× [xπj − 1 + xej(xπj + 2− xej)]F(xj, xej) , (j = 1, ..., n) , (3.21)

where we use the notations:

λ(y1, y2, y3) = y2
1 + y2

2 + y2
3 − 2y1y2 − 2y2y3 − 2y3y1 , (3.22a)

xπj =
M2

π

M2
Nj

, xej =
M2

e

M2
Nj

, xj =
M2

µ

M2
Nj

, (j = 1, ..., n) , (3.22b)

and the function F(xj, xej) is given in Appendix A [Eq. (A.5)] where the derivation of this
expression (3.21) is given. When Me = 0, the results acquires a simpler form:

lim
Me→0

Γ(X)(DD∗)jj =
K2
π

192(2π)4

M11
Nj

ΓNj M
3
π

(xπj − 1)2f(xj) , (3.23)

where the function f(xj) = F(xj, 0) is:

f(xj) = 1− 8xj + 8x3
j − x4

j − 12x2
j lnxj . (3.24)
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3. The Rare π± → e±e±µ∓ν Decay

In the range of masses 0.117 GeV < MNj < 0.136 GeV the expression (3.23) differs
from the exact expression (3.21) [with Eq. (A.5)] by less than one per cent. However, for
0.106 GeV < MNj < 0.117 GeV and for 0.136 GeV < MNj < 0.139 GeV the deviation is more
than one per cent. For values of MNj close to the lower on-shell bound Mµ+Me (≈ 0.1062 GeV)
the deviation is very large and the expression (3.21) [with Eq. (A.5)] must be used instead of
Eq. (3.23) for Γ(X)(DD∗)jj. We shall use the general expression (3.21) unless otherwise stated.

On the other hand, taking into account Eq.(3.15), and for the on-shell regime (0.106 GeV <
MNj < 0.139 GeV) Fig. 3.5 and Fig. 3.6, we can write

K̃Di1 = K̃Ma
1 = K̃1 ≈ 1.6 |BeN1|2 + 1.1 |BµN1|2 + 1.1 |BτN1|2 (3.25)

Finally, the branching ratio defined in (3.11), for (LV) and (LC) processes in the on-shell
mass region, are:

Br(LV )(π+) =
2|BeN1|4 Γ(DD∗)11

K̃Ma
1 Γ(π+ → all)

=
|BeN1|4

K̃1

Br(π+), (3.26a)

Br(LC)(π+) =
2|BeN1|2|BµN1|2 Γ(DD∗)11

K̃Di1 Γ(π+ → all)
=
|BeN1|2|BµN1|2

K̃1

Br(π+), (3.26b)

where Br(π+) = 2Γ(DD∗)11

Γ(π+→all)
is the canonical branching ratio. The on-shell ”amplification” factor

1/K̃1 (>> 1) is manifest here, and the mixing effects are ∼ |B`N1|4/K̃1 ∼ |B`N1|2.

The future pion factories, among them the Project X at Fermilab, will produce charged
pions with lab energies Eπ of a few GeV (i.e., the Lorentz time dilation factor γπ ∼ 101), and
luminosities ∼ 1022 cm−2s−1 [44]. If the beam has 1 cm2 cross section, then ∼ 1029 charged
pions could be expected per year.

The probability [Eq.C.2] of (on-shell) neutrinoN to decay inside a detector of length L ∼ 101

m in such pion factories is:

PN ∼ 10−3 K̃. (3.27)

where K̃ ∼ K̃j ∝ |B`Nj |2. We should multiply the obtained branching ratios (3.26) by such
acceptance factors PN to obtain the effective branching ratios.

Br(LV )(π+)(eff) ≈ 10−3 |BeN1 |4 Br(π+) = |BeN1|4 Breff(π+) (3.28a)

Br(LC)(π+)(eff) ≈ 10−3 |BeN1|2|BµN1|2 Br(π+) = |BeN1|2|BµN1|2 Breff(π+) (3.28b)

Here Breff(π+) is the canonical branching ratio and we present it, for the on-shell mass range
in Fig. 3.7.
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3.2. π+ → e+e+µ−νe via one intermediate neutrino
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Figure 3.7: The canonical effective branching ratio Breff(π+) for on-shell MN1 mass range.

In order to get an estimate of the magnitude of the effective branching ratios Br(X)(π+)(eff),
we can take into account the limits for |BeN1|2 ≤ 10−8 and |BµN1|2 ≤ 10−6 given in [45], and
draw a plot for these in Fig. 3.8.
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Figure 3.8: The LV and LC canonical effective branching ratios for on-shell MN1 mass range.
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3. The Rare π± → e±e±µ∓ν Decay

3.2.2 π+ → e+e+µ−νe via one off-shell neutrino

In the off-shell MN1 mass region the same expressions (3.16) as in the on-shell mass region are
valid, however this time, the identities (3.10) are not valid. Then, all the integrations over the
final particle phase space must be performed numerically. There is no on-shell ”amplification”

factor (1/K̃1) anymore. Once having implemented and finished the numerical calculations, we
have clear indication of:

• There is no dependence of the neutrino decay width (ΓN) in the off-shell mass regions, in

contrast with 1/ΓN (∝ 1/K̃1) dependence in the on-shell case.

• The D-C interference terms are not negligible, these contributions even have the same
order of magnitude as DD and CC contributions.

All the numerical calculation was implemented by two differents codes, one of them in
Mathematica and the other one in Vegas (Fortran).

The results of Breff(π+) in the complete mass range (including the on-shell and off-shell
mass region), are presented in Fig.3.9:

0.001 0.01 0.1 1 1010-28

10-24

10-20

10-16

10-12

10-8

MNHGeVL

Breff HΠ+ L

Figure 3.9: The effective branching ratio, when one intermediate Majorana neutrino is exchanged.

In Fig.3.9 we can distinguish clearly the two mass regions. While the on-shell mass region
corresponds to a big peak around 106−139 MeV Breff(π+) decreases very quickly and by many
orders of magnitude as we move away from the on-shell region.

20



3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

3.3 The branching ratio and CP asymmetry of π± → e±e±µ∓ν through
two on-shell intermediate neutrinos.

This section is based mainly in our work [42] and we shall use the results of the previous Section

to obtain the results for the branching ratios Br
(X)
± (X = LV, LC) and the CP asymmetries

A
(Y )
CP (Y = Di,Ma) of (π+ → e+Nj → e+µ−ν) through two on-shell intermediate neutrinos

(j = 2).

Br
(X)
± =

S
(X)
± (π)

Γ(π− → all) + Γ(π+ → all)
≈ Γ(X)(π−)± Γ(X)(π+)

2 Γ(π+ → all)
, (3.29a)

A(Y)
CP =

Br
(Y)
−

Br
(Y)
+

≡ Γ(Y )(π−)− Γ(Y )(π+)

Γ(Y )(π−) + Γ(Y )(π+)
, (3.29b)

where we note that ΓDi(π±) = ΓLC(π±) and ΓMa(π±) = ΓLC(π±) + ΓLV (π±).

The total branching ratio and the total asymmetry are Br = Br(LV ) + Br(LC) and
A = A(LV) +A(LC) when Nj are Majorana neutrinos, and Br = Br(LC) and A = A(LC) when Nj

are Dirac neutrinos. As we shall see, for A(Y)
CP to be appreciable nonzero, we shall need at least

two on-shell neutrinos Nj (j = 1, 2) which should be almost mass degenerate. From now on,
we assume that have two on-shell neutrinos. It is useful to introduce the phase conventions
of the book Ref. [39] related with the heavy-light neutrino mixing elements BeNj and BµNj .
Furthermore, we adopt the convention MN2 > MN1 :

κe =
|BeN2|
|BeN1|

, κµ =
|BµN2|
|BµN1|

, (3.30a)

BeNj = |BeNj |eiθej , BµNj = |BµNj |eiθµj , (3.30b)

θ(LV ) = 2(θe2 − θe1) , θ(LC) = (θe2 − θe1)− (θµ2 − θµ1) . (3.30c)

It turns out (see later) that in our cases of interest the D-C interference contributions are

negligible. Using Eqs. (3.8), we then obtain the resulting (sums) S
(X)
+ (π) of the decay widths

are:
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3. The Rare π± → e±e±µ∓ν Decay

S
(LV )
+ (π) ≡

(
Γ(LV )(π−) + Γ(LV )(π+)

)
= 4|BeN1 |4Γ̃(LV )(DD∗)11

×

[
1 + κ4

e

Γ̃(LV )(DD∗)22

Γ̃(LV )(DD∗)11

+ 2κ2
e

(
cos θ(LV )

)
δ

(LV )
1

]
, (3.31a)

S
(LC)
+ (π) ≡

(
Γ(LC)(π−) + Γ(LC)(π+)

)
= 4|BeN1|2|BµN1|2Γ̃(LC)(DD∗)11

×

[
1 + κ2

eκ
2
µ

Γ̃(LC)(DD∗)22

Γ̃(LC)(DD∗)11

+ 2κeκµ
(
cos θ(LC)

)
δ

(LC)
1

]
, (3.31b)

where δ
(X)
j in the above quantities represent the relative contribution, due to the overlaping

between N1-N2 in the interference channel.

δ
(X)
j ≡ ReΓ̃(X)(DD∗)12

Γ̃(X)(DD∗)jj
, (X = LV, LC; j = 1, 2) . (3.32)

On the other hand, the difference S
(X)
− (π) of the π− and π+ rare decays is (again using

Eqs. (3.8)):

S
(LV )
− (π) ≡

(
Γ(LV )(π−)− Γ(LV )(π+)

)
= 8|BeN1|4κ2

e

(
sin θ(LV )

)
ImΓ̃(LV )(DD∗)12 , (3.33a)

S
(LC)
− (π) ≡

(
Γ(LC)(π−)− Γ(LC)(π+)

)
= 8|BeN1|2|BµN1|2κeκµ

(
sin θ(LC)

)
ImΓ̃(LC)(DD∗)12 . (3.33b)

Nonzero value of S
(X)
− (π) signals CP violation in the neutrino sector N1-N2. In the above

expressions we have neglected the D-C terms. Furthermore, we can recognize (a posteriori)
the difference of the CP-odd phases as θ(X) (X = LV, LC) coming from the PMNS mix-
ing matrix elements, cf. Eqs. (3.30b)-(3.30c); while (sinus of) the difference of the CP-even
phases is contained in the imaginary part of the product of propagators, ImΓ(X)(DD∗)12 ∝
ImP

(X)
1 (D)P

(X)
2 (D)∗, cf. Eqs. (3.35) later.

In the limit of ΓNj → +0 (ΓNj � MNj), the expression for the “diagonal” decay width

Γ(X)(DD∗)11 (and thus also for Γ(X)(DD∗)22) can be calculated analytically, see Eqs. (3.20),(3.21).

Furthermore, we can also calculate, analogously as Γ(X)(DD∗)jj, the analytic expression for

the CP asymmetric difference S
(X)
− in the limit ΓNj → +0 (ΓNj � MN2 −MN1). In order to

explain this analogy, we note that in the limit ΓNj → +0 it was crucial to use in the analytic

calculation of Γ(X)(DD∗)jj the identity:
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3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

|P (LC)
j (D)|2 =

∣∣∣∣∣ 1

(pπ − p1)2 −M2
Nj

+ iΓNjMNj

∣∣∣∣∣
2

≈ π

MNjΓNj
δ((pπ − p1)2 −M2

Nj
) ; (j = 1, 2; ΓNj �MNj) . (3.34)

On the other hand, in the difference S
(X)
− ∝ ImΓ(X)(DD∗)12 we have in the integrand of

ImΓ(X)(DD∗)12 as a factor the following combination of propagators:

Im (P1(D)P2(D)∗) =

(
p2
N −M2

N1

)
ΓN2MN2 − ΓN1MN1

(
p2
N −M2

N2

)[(
p2
N −M2

N1

)2
+ Γ2

N1
M2

N1

] [(
p2
N −M2

N2

)2
+ Γ2

N2
M2

N2

] (3.35a)

= η × π

M2
N2
−M2

N1

[
δ(p2

N −M2
N2

) + δ(p2
N −M2

N1
)
]
, (3.35b)

where pN = (pπ−p1) in the direct channel, and we assumed that ΓNj � |∆MN | ≡MN2−MN1

in Eq. (3.35b). The parameter η was introduced in Eq. 3.35b which parametrizes any deviation
from the naive expectation η = 1. We expect η ≈ 1 when ∆M2

N � ΓNj . There is a detailed
explanation about the validity of (3.35) in Appendix D where it is argued that when ∆MN �
MN1 (≡ MN) η(y) = y2

y2+1
, with y = ∆MN/ΓN and ΓN = 1

2
(ΓN1 + ΓN2). When X = LV , the

corresponding combination of propagators is the same as in Eq. (3.35) but with the additional
factor MN1MN2 . The expression (3.35b) has formally the same structure as the expression
(3.34), except for the factors in front of the Dirac delta(s). Therefore, integration over the final
phase space can be performed formally in the same way. This then results in the expressions:

ImΓ̃(LV )(DD∗)12 = η(y)
K2
π

192(2π)4

1

M3
π

MN1MN2

(MN2 +MN1)(MN2 −MN1)
(3.36a)

×
2∑
j=1

M10
Nj
λ1/2(xπj, 1, xej) [xπj − 1 + xej(xπj + 2− xej)]F(xj, xej) ,

ImΓ̃(LC)(DD∗)12 = η(y)
K2
π

192(2π)4

1

M3
π

1

(MN2 +MN1)(MN2 −MN1)

×
2∑
j=1

M12
Nj
λ1/2(xπj, 1, xej) [xπj − 1 + xej(xπj + 2− xej)]F(xj, xej) , (3.36b)

where the overall factor η(y) is equal to unity (η(y) = 1) when ΓNj � |∆MN |.

We note that there is no such overall correction factor in the expression (3.21) for Γ(DD∗)jj,
because in our considered cases ΓNj � MNj always, and Eq. (3.21) is the correct expression
then.
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3. The Rare π± → e±e±µ∓ν Decay

All these quantities presented above, can be evaluated also via numerical integrations over
the final phase space, with finite widths ΓNj in the propagators.

Once the numerical evaluation has been performed, we have clear indications of :

• The scalings Γ̃(X)(DD∗)jj ∝ 1/ΓNj and ImΓ̃(X)(DD∗)12 ∝ 1/∆MN , as suggested by
Eqs. (3.21) and (3.36), are confirmed numerically (when ΓNj � MNj , and ΓNj � ∆MN ,
respectively).

• When the two intermediate neutrino are on-shell, the direct-crossed (DC∗ and CD∗)

interference contributions to S
(X)
± (π) are negligible in all considered cases, in comparison

with the corresponding direct (DD∗) and crossed channel (CC∗) contributions.

• In the sum S
(X)
+ (π), the interference contributions ReΓ̃(X)(DC∗)ij ∼ 10−37 GeV are ap-

proximately independent of ΓNj . On the other hand, Γ̃(X)(DD∗)jj = Γ̃(X)(CC∗)jj is at

ΓN = 10−4 GeV about two orders of magnitude larger than ReΓ̃(X)(DC∗)ij.

Γ̃(X)(DD∗)jj grows at decreasing ΓN as 1/ΓN [Eq. (3.21)], while ReΓ̃(X)(DC∗)ij does not
decrease and becomes thus at ΓN < 10−4 GeV relatively negligible.

• In the difference (asymmetry) S
(X)
− (π), theDC∗ interference contribution ImΓ̃(X)(DC∗)12 ∼

10−38 GeV is approximately independent of ∆MN . On the other hand, ImΓ̃(X)(DD∗)12 =

ImΓ̃(X)(CC∗)12 is at ∆MN = 10−3 GeV about two orders of magnitude larger than

ImΓ̃(X)(DC∗)12. ImΓ̃(X)(DD∗)12 grows at decreasing ∆MN as 1/∆MN [Eq. (3.36)], while

ImΓ̃(X)(DC∗)12 does not decrease and becomes thus at ∆MN < 10−3 GeV relatively
negligible.

Furthermore, the numerical evaluations with ΓNj 6� ∆MN give us the values of the δ
(X)
j

( Eqs. (3.32) and (3.31)) and η(X) correction factors, due to non-negligible overlap of the N1

with N2 resonance. It turns out that these functions are independent of X (= LV, LC), and
that η and δ ≡ (1/2)(δ1 + δ2) are effectively functions of only one parameter, y ≡ ∆MN/ΓN ,
where ∆MN ≡MN2 −MN1 (> 0), and ΓN = (1/2)(ΓN1 + ΓN2). Then, we can write:

η = η(y) , y ≡ ∆MN

ΓN
, ΓN ≡

1

2
(ΓN1 + ΓN2) , (3.37a)

δ = δ(y) , δ ≡ 1

2
(δ1 + δ2) ,

δ1

δ2

=
Γ(DD∗)22

Γ(DD∗)11

=
K̃2

K̃1

. (3.37b)

The values of δ (= δ(X)) and η (= η(X)) as functions of ∆MN/ΓN can be obtained by
numerical integrations over the four-particle finite phase space, and are tabulated in Table 3.2
and Table 3.1, respectively (with their estimated uncertainties due to numerical integrations).

24



3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

Table 3.1: Values of η(y)/y correction factors for various values of y ≡ ∆MN/ΓN .

y ≡ ∆MN

ΓN
log10 y η(y) η(y)

y

10.0 1.000 0.984± 0.003 0.0984± 3× 10−4

5.00 0.699 0.957± 0.003 0.191± 0.001
2.50 0.398 0.854± 0.003 0.342± 0.001
1.67 0.222 0.730± 0.005 0.438± 0.003
1.25 0.097 0.610± 0.007 0.488± 0.006
1.00 0.000 0.498± 0.005 0.498± 0.005
0.70 -0.155 0.333± 0.005 0.476± 0.005
0.50 -0.301 0.199± 0.004 0.399± 0.004
0.33 -0.481 0.099± 0.003 0.300± 0.003
0.10 -1.000 0.009± 0.001 0.098± 0.001

In order to give a better presentation of the values of Tables 3.1 and 3.2, this information
is depicted in figures 3.10 and 3.11.

0 2 4 6 8 10
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0.6
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ΗHyL

ΗHyL�y

Legends

Figure 3.10: The functions η(y)
y

and η(y), as a function of y = ∆MN
ΓN

. The interception point occurs when

y = 1 and matches to the maximum value of η(y)
y

, this value (∆MN = ΓN ) being the necessary
condition for get maximum CP violation.
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3. The Rare π± → e±e±µ∓ν Decay

Table 3.2: Values of δ(y) correction terms for various values of y ≡ ∆MN/ΓN .

y ≡ ∆MN

ΓN
log10 y δ(y)

10.0 1.000 (993.4± 6.25) · 10−5

9.00 1.000 (122.3± 0.57) · 10−4

8.00 1.000 (154.6± 0.64) · 10−4

7.00 1.000 (200.8± 0.61) · 10−4

6.00 0.699 (270.8± 0.69) · 10−4

5.00 0.398 (385.7± 0.79) · 10−4

4.00 1.000 (589.2± 0.90) · 10−4

3.00 1.000 (100.0± 0.11) · 10−3

2.00 0.222 (199.5± 0.12) · 10−3

1.00 0.000 (500.7± 0.18) · 10−3

0.90 -0.046 (552.2± 0.21) · 10−3

0.80 -0.097 (610.3± 0.22) · 10−3

0.70 -0.155 (671.1± 0.23) · 10−3

0.60 -0.222 (735.8± 0.26) · 10−3

0.50 -0.301 (800.5± 0.30) · 10−3

0.40 -0.398 (862.6± 0.29) · 10−3

0.30 -0.523 (918.1± 0.32) · 10−3

0.20 -0.699 (961.7± 0.34) · 10−3

0.10 -1.000 (990.8± 0.36) · 10−3

0 2 4 6 8 10
0.01
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Figure 3.11: The function δ(y) as a function of y = ∆MN
ΓN

, on a logarithmic scale.
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3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

We note that the rare process decay widths S
(X)
+ (π), Eqs. (3.31), are formally quartic in

the heavy-light mixing elements |B`N |, i.e., very small. Nonetheless, they are proportional to

the expressions Γ̃(DD∗)jj, Eqs. (3.20) and (3.21), which in turn is proportional to 1/ΓNj due

to the on-shellness of the intermediate Nj’s. This 1/ΓNj is proportional to 1/K̃j ∼ 1/|B`Nj |2
according to Eqs. (3.13)-(3.15). Therefore, the on-shellness of Nj’s makes the rare process
decay widths significantly less suppressed by the mixings:

Γ̃(DD∗)jj ∝ 1/ΓNj ∝ 1/K̃j ∝ 1/|B`Nj |2 , (3.38a)

S
(X)
+ (π) ∝ |B`Nj |2 . (3.38b)

On the other hand, comparing the expressions (3.36) relevant for the CP asymmetries S
(X)
− (π)

(3.33), with the expression (3.20) relevant for the decay widths S
(X)
+ (π) (3.31), we see that the

asymmetries S
(X)
− (π) are suppressed by mixings as ∼ |B`N |4, making them in general much

smaller than the decay widths S
(X)
+ (π) ∝ |B`Nj |2. However, the asymmetries are proportional

to 1/∆MN (where ∆MN = MN2 −MN1 > 0). In general, ∆MN � ΓNj . Nonetheless, in a

scenario where ∆MN becomes comparable with ΓNj (y = ∆MN

ΓN
≈ 1, very degenerate neutrinos),

the asymmetries S
(X)
− (π) can become comparable with the decay widths S

(X)
+ (π).

Our analysis works in general low-scale seesaw scenarios. However, we shall pay
special attention to the νMSM model [29, 30], because it includes two almost
degenerate neutrinos Nj in the mass range of ∼ 102 GeV and a dark matter (DM)
candidate.

In particular, in this limit of two almost degenerate neutrinos Nj, where now MN1 ≈MN2 ≡
MN , the formulas (3.21), (3.32) and (3.36) get simplified. In this case, it is convenient to
introduce a “canonical” branching ratio Br

Br(MN) ≡ 1

4π

K2
πM

3
π

G2
F2 Γ(π+ → all)

1

x6
π

λ1/2(xπ, 1, xe)

× [xπ − 1 + xe(xπ + 2− xe)]F(x, xe) , (3.39)

where we use the notations

xπ =
M2

π

M2
N

, xe =
M2

e

M2
N

, x =
M2

µ

M2
N

. (3.40)

In terms of the canonical branching ratio, the formulas (3.21), (3.32) and (3.36) can be
rewritten, in the mentioned almost degenerate scenario, as

Γ̃(DD∗)jj
Γ(π+ → all)

=
1

4K̃(T )
j

Br , (3.41a)

ReΓ̃(DD∗)12

Γ(π+ → all)
=

δ(y)

2(K̃(T )
1 + K̃(T )

2 )
Br , (3.41b)

ImΓ̃(DD∗)12

Γ(π+ → all)
=

η(y)/y

2(K̃(T )
1 + K̃(T )

2 )
Br , (3.41c)
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3. The Rare π± → e±e±µ∓ν Decay

where y ≡ ∆MN/ΓN and T = Di, Ma (there is no difference between K̃(Di) and K̃(Ma) in
the on-shell mass range, cf. Eq. (3.25)). Similarly, after some algebra, we can rewrite in this
scenario (MN1 ≈MN2 ≡MN) the obtained branching ratios for the considered rare decays and
CP asymmetries, in terms of Br and of the heavy-light mixing parameters. Below we present
the results for the case when the neutrinos Nj are Dirac (Di), and when they are Majorana
(Ma) neutrinos. The branching ratio for the considered rare processes are:

Br
(Di)
+ ≡ S

(LC)
+ (π)

2 Γ(π+ → all)
=

[ 2∑
j=1

|BeNj |2|BµNj |2

K̃Dij

+4δ(y)
|BeN1||BeN2 ||BµN1||BµN2|

(K̃Di1 + K̃Di2 )
cos θ(LC)

]
Br(MN) (3.42a)

=
|BeN1|2|BµN1|2

K̃Di1

[
1+
K̃Di1

K̃Di2

κ2
eκ

2
µ+4δ(y)

K̃Di1

(K̃Di1 + K̃Di2 )
κ2
eκ

2
µ cos θ(LC)

]
Br(MN)

Br
(Ma)
+ ≡ S

(LV )
+ (π) + S

(LC)
+ (π)

2 Γ(π+ → all)

=

[ 2∑
j=1

|BeNj |2(|BeNj |2 + |BµNj |2)

K̃Ma
j

+ 4δ(y)
|BeN1||BeN2 |

(K̃Ma
1 + K̃Ma

2 )

×
(
|BeN1||BeN2| cos θ(LV ) + |BµN1||BµN2 | cos θ(LC)

) ]
Br(MN) (3.42b)

=
|BeN1|2(|BeN1|2 + |BµN1|2)

K̃Ma
1

[
1 +
K̃Ma

1

K̃Ma
2

κ2
e

(
κ2
e|BeN1|2 + κ2

µ|BµN1|2

|BeN1|2 + |BµN1|2

)

+4δ(y)
K̃Ma

1

(K̃Ma
1 + K̃Ma

2 )
κe

(
κe|BeN1|2

(|BeN1|2 + |BµN1|2)
cos θ(LV )

+
κµ|BµN1 |2

(|BeN1|2 + |BµN1|2)
cos θ(LC)

)]
Br(MN) .

Here we took into account that in the Dirac case only the LC process constributes, while
in the Majorana case both the lepton number violating (LV ) and conserving (LC) processes

contribute. The mixing parameters K̃j are given in Eq. (3.25). The contributions of the N1-N2

overlap effects give the relative corrections of O(δ) and are negligible when ∆MN > 10ΓN ,
cf. Table 3.2.

28



3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

The CP violating branching ratios Br− for these considered rare processes are:

Br
(Di)
− ≡ S

(LC)
− (π)

2 Γ(π+ → all)
=

Γ(LC)(π−)− Γ(LC)(π+)

2 Γ(π+ → all)

=
4|BeN1||BeN2||BµN1||BµN2|

(K̃Di1 + K̃Di2 )
sin θ(LC)η(y)

y
Br(MN) (3.43a)

=
4|BeN1|2|BeN2|2κeκµ

(K̃Di1 + K̃Di2 )
sin θ(LC)η(y)

y
Br(MN)

Br
(Ma)
− ≡ (S

(LV )
− (π) + S

(LC)
− (π))

2 Γ(π+ → all)

=
Γ(LV )(π−) + Γ(LC)(π−)− Γ(LV )(π+)− Γ(LC)(π+)

2 Γ(π+ → all)
=

4|BeN1||BeN2|
(K̃Ma

1 + K̃Ma
2 )

×
(
|BeN1||BeN2| sin θ(LV ) + |BµN1||BµN2| sin θ(LC)

) η(y)

y
Br(MN) (3.43b)

=
4κe|BeN1|2

(K̃Ma
1 +K̃Ma

2 )

(
κe|BeN1|2 sin θ(LV )+κµ|BµN1 |2 sin θ(LC)

) η(y)

y
Br(MN).

Consequently, the CP asymmetry ratios A(X)
CP are obtained from Eqs. (3.42)-(3.43) and are

presented in Eqs. (3.44a) and (3.44b).
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3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

When y (≡ ∆MN/ΓN) becomes large (y > 10), i.e., when ∆MN > 10ΓN , Table 3.1 implies
that the CP asymmetries (3.44a)-(3.44b) become suppressed by the η(y)/y factor. On the
other hand, when y ≈ 1 and |θ(X)| ∼ 1, the factor η(y)/y is ∼ 1 and the CP asymmetry ratio

A(X)
CP is maximal and becomes ∼ 1, while all Br± become ∼ |B`Nj |2Br(MN) (` = e, µ).

If we also assume that |B`N2| ≈ |B`N1| (for ` = e, µ, τ), then also K̃(T )
1 = K̃(T )

2 ≡ K̃(T ), and the
expressions for ACP become particularly simple

A(Di)
CP =

sin θ(LC)

(1 + δ(y) cos θ(LC))

η(y)

y
= sin θ(LC) η(y)

y
(1 +O(δ)) ,

A(Ma)
CP =

(
|BeN1|2 sin θ(LV) + |BµN1|2 sin θ(LC)

|BeN1|2 + |BµN1|2

)
η(y)

y
(1 +O(δ)) .

We present in Fig. 3.12 the normalized quantity Br as a function of MN in the on-shell
kinematic interval; and in Fig. 3.13 the same curve near the lower end point MN ≈ Mµ + Me

(= 0.1062 GeV), where the effects of Me 6= 0 are relatively appreciable. On the other hand,
the (CP asymmetry) branching ratio Br− in the case of mixing one and maximal CP phases

(i.e., when |B`Nj | = 1 for all `, and sin θ(X) = 1; Br
(Di)
− = Br

(Ma)
− ≡ Br− then), as a function of

∆MN , is presented in Fig. 3.14. In that Figure, no overlap effects are taken into account, i.e.,
η = 1.
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Figure 3.12: The normalized branching ratio Br, Eq. (3.39), as a function of the mass MN1 ≈ MN2 ≡ MN .
The full formula was used (with Me = 0.511× 10−3 GeV). The formula for Me = 0 case gives
a line which is in this Figure indistinguishable from the depicted line.
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Figure 3.13: The normalized branching ratio Br near the lower end point Mµ + Me (= 0.1062 GeV): (a) in the
interval below 0.107 GeV; (b) in the interval below 0.110 GeV. The dashed line is for Me = 0, the full
line includes the effects of Me = 0.511× 10−3 GeV.
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Figure 3.14: The CP asymmetry A as a function of ∆MN = MN2 − MN1 , for mixing one (|B`Nj | = 1)

and large CP-violating phases (sin θ(X) = 1), for four different values of MN2 . No suppression
effects from the overlap of the N1 and N2 resonances are accounted for here (η = 1).

Therefore, when 0.33 < y ≡ ∆MN/ΓN < 5, i.e., in the almost degenerate case of two on-
shell neutrinos Nj, we can expect in general the CP asymmetry ratio ACP of the considered rare
process to be ∼ 1. The branching ratio for this process, in the case of one N neutrino and in the
Me = 0 limit, was considered in Ref. [43], however, the general conclusions remain unchanged
with respect to the Me = 0.511 MeV case. All the conclusions about the measurability of this
branching ratio Br+ can be translated into the conclusions about the measurability of the (CP
asymmetry) branching ratio Br− in the described almost degenerate scenario, provided that
|θ(LC)|, |θ(LV)| ∼ 1.
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3.3. The branching ratio and CP asymmetry of π± → e±e±µ∓ν through two on-shell intermediate neutrinos.

This means that the CP asymmetries could be measured in the future pion factories in the
described scenarios, provided that the heavy-light mixing parameters |B`Nj |2 (` = e, µ) are
not many orders of magnitude below the present experimental upper bounds. The present
experimental bounds [45] of the mixing parameters |B`Nj |2 (` = e, µ, τ) in the considered mass

range, are: |BeNj |2
<∼ 10−8 ; |BµNj |2

<∼ 10−6 ; |BτNj |2
<∼ 10−4.

In order to take into account the acceptance factor (C.2) which is the probability of the
on-shell neutrino to decay within the detector, we should multiply the obtained branching

ratios Br± by such acceptance factors PN to obtain the effective branching ratios Br
(eff)
± .

If the largest among the mixing elements |B`Nj |2 (` = e, µ) are |BµNj |2 (∼ |BµN |2) (j = 1, 2),
i.e., if we have |BµN |2 � |BeNj |2 (∼ |BeN |2), the formulas (C.2) with (3.42) and (3.43) give:

PNBr
(Di,Ma)
+ ∼ 10−3|BeN |2|BµN |2Br(MN) ∼ |BeN |2|BµN |210−7 , (3.45a)

PNBr
(Di,Ma)
− ∼ 10−3|BeN |2|BµN |2 sin θ(X)Br(MN) ∼ |BeN |2|BµNj |2 sin θ(LC)10−7 .(3.45b)

In these relations, we took into account that the LC process dominates over the LV process
in the considered case, and that Br ∼ 10−4 in most of the on-shell interval for the masses
MN1 ≈ MN2 ≡ MN , cf. Fig. 3.12. If in this case, in addition, |B`Nj |2 (` = e, µ) are close to
their present upper bounds |BeNj |2 ∼ 10−8 and |BµNj |2 ∼ 10−6, this implies that:

PNBr+ ∼ 10−21 and PNBr− ∼ 10−21 (the latter provided sin θ(X) ∼ 1), implying that ∼ 108

events can be detected per year, with the difference between π− and π+ decays also of the
order ∼ 108. This number decreases in proportionality with the factor |BeN |2|BµN |2 when this
factor decreases. In this scenario there is almost no difference between the case when Nj are
Dirac and the case when Nj are Majorana.

If the largest among the mixing elements |B`Nj |2 (` = e, µ) are |BeNj |2 (∼ |BeN |2) (j = 1, 2),
i.e., if we have |BeN |2 � |BµNj |2 (∼ |BµN |2), the formulas (C.2) with (3.42) and (3.43) give:

PNBr
(Di)
+ ∼ 10−3|BeN |2|BµN |2Br(MN) ∼ |BeN |2|BµN |210−7 .

(3.46a)

PNBr
(Ma)
+ ∼ 10−3|BeN |4Br(MN) ∼ |BeN |410−7 .

(3.46b)

PNBr
(Di)
− ∼ 10−3|BeN |2|BµN |2 sin θ(LC)Br(MN) ∼ |BeN |2|BµN |2 sin θ(LC)10−7 .

(3.46c)

PNBr
(Ma)
− ∼ 10−3|BeN |4 sin θ(LV)Br(MN) ∼ |BeN |4 sin θ(LV)10−7 .

(3.46d)
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3. The Rare π± → e±e±µ∓ν Decay

In this considered case, the LV process dominates over the LC process. If in this case,
in addition, |BeNj |2 are close to their present upper bounds, |BeNj |2 ∼ 10−8 (and |BµN |2 �
|BeNj |2), this implies that:

PNBr
(Ma)
+ ∼ 10−23 (� PNBr

(Di)
+ ) and PNBr

(Ma)
− ∼ 10−23 (� PNBr

(Di)
− ), assuming that

sin θ(LV) ∼ 1. This implies that ∼ 106 events can be detected per year, with the difference
between π− and π+ decays also of the order ∼ 106, if Nj are Majorana neutrinos (and less
events if Nj are Dirac neutrinos). This number decreases in proportionality with the factor
|BeN |4 when this factor decreases. In this scenario there is a clear difference between the case
when Nj are Dirac and the case when Nj are Majorana.

The mentioned present experimental upper bounds on the mixings (|BeNj |2
<∼ 10−8;

|BµNj |2
<∼ 10−6) suggest that the first of the mentioned two scenarios is more likely,

i.e., that the LC processes dominate over the LV processes. Then, the measurement of the
CP asymmetries alone cannot distinguish between the Dirac and the Majorana character of
intermediate neutrinos Nj’s. However, as argued in Ref. [43], the neutrino character could
be determined from the measured differential decay rates (dΓ/dEµ) of these processes with
respect to the muon energy Eµ in the Nj rest frame.
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Chapter 4

The Rare M+→ e+e+M ′−

Semi-Hadronic Decay

In this Section we pay our atention to the rare semihadronic decays M+ → e+e+M ′−, where M
and M ′ are pseudoscalar mesons: M = K,D,Ds, B,Bc and M

′
= π,K,D,Ds. The dominant

contribution to this decay is presented in figure 4.1; and is given by exchanges of on-shell
neutrinos Nj.

Figure 4.1: The lepton number violating decay M+ → `+1 `
+
2 M

′−: the direct (D) channel (the left-hand
figure); the crossed (C) channel (the right-hand figure).

As we can see in Fig. 4.1 the intermediate neutrinos (Nj) must to be Majorana, because
the process violates the lepton number (by two units). Again we shall consider the scenario
of two on-shell neutrinos with similar masses. This Section is based mainly on our work [46]
and [43], see also [47] for a similar approach.

4.1 The process and formalism for the LV semihadronic decays of
pseudoscalars

As we seen in the previous Section 3, the off-shell condition in the neutrino propagator produce
a strong suppresion in the decay width. Therefore, in this Section we only concentrate on the
on-shell mass region.
The topology of these tree level processes is like “s-channel.” The processes with (two-loop)
“t-channel” topology are strongly suppressed [48]. The type of processes of Fig. 4.1, within
the models with sterile neutrinos N in the mass range of mesons, have been studied in several
works, among them Refs. [20,21,23–26,45,48].
We have to remember that we denote the heavy-light mixing elements Eq.(2.7) for the heavy
neutrinos as B`Nj (j = 1, 2). We shall use the phase conventions of the book Ref. [39], i.e., all
the CP-violating phases are incorporated in the PMNS matrix of mixing elements. The sum
and difference of the decay widths, S±(M) ≡ [Γ(M− → `−1 `

−
2 M

′+) ± Γ(M+ → `−1 `
−
2 M

′+)],
of the processes of Fig. 4.1 will be appreciable only if the two intermediate neutrinos Nj are
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4. The Rare M+ → e+e+M ′− Decay

on-shell

(MM ′ +M`2) < MNj < (MM −M`1) , or/and

(MM ′ +M`1) < MNj < (MM −M`2) . (4.1)

We shall use the same short-hand notation as in the previous Section 3 for the decay widths
of these rare processes:

Γ(M±) ≡ Γ(M± → `±1 `
±
2 M

′∓) . (4.2)

These decay widths can be written in the form

Γ(M±) = (2− δ`1`2)
1

2!

1

2MM

1

(2π)5

∫
d3 |T (M±)|2 , (4.3)

where 1/2! is the symmetry factor when the two charged leptons are equal. Here, |T (M±)|2 is
the absolute square (summed over the final helicities) of the sum of amplitudes from N1 and
N2 neutrinos in the two channels D (direct) and C (crossed). We refer to Appendix E for
details. In Eq. (4.3), d3 denotes the integration over the three-particle final phase space

d3 ≡
d3~p1

2E`1(~p1)

d3~p2

2E`2(~p2)

d3~pM ′

2EM ′(~pM ′)
δ(4) (pM − p1 − p2 − pM ′) . (4.4)

We denoted by p1 and p2 the momenta of `1 and `2 charged leptons from the left and the
right vertex of the direct channels, respectively (in the crossed channel `2 couples to the left
vertex), cf. Fig. 4.1. The decay widths Eq.(4.3) can then be written as a double sum over the
contributions of Ni and Nj exchanges (i, j = 1, 2), with the explict mixing factors factored out

Γ(M±) = (2− δ`1`2)
2∑
i=1

2∑
j=1

k
(±)
i k

(±)∗
j

×
[
Γ̃M(DD∗)ij + Γ̃M(CC∗)ij + Γ̃M±(DC∗)ij + Γ̃M±(CD∗)ij

]
, (4.5)

where k
(±)
j are the corresponding mixing factors

k
(−)
j = B`1NjB`2Nj , k

(+)
j = (k

(−)
j )∗ , (4.6)

Since |TM+(D)|2 = |TM−(D)|2 and |TM+(C)|2 = |TM−(C)|2, we omitted the subscripts ± from

the DD∗ and CC∗ contribution terms Γ̃M(DD∗)ij and Γ̃M(CC∗)ij in Eq. (4.5).

Γ̃M±(XY ∗)ij are the normalized contributions (without the mixing factor) of Ni exchange
in the X channel and complex-conjugate of the Nj exchange in the Y channel (X, Y = C,D)

Γ̃M±(XY ∗)ij ≡ K2
M

1

2!

1

2MM

1

(2π)5

∫
d3 Pi(X)Pj(Y )∗MNiMNjTM±(X)TM±(Y )∗ . (4.7)

Here, TM±(X) (X = D,C) are the relevant parts of the amplitude in the X channel which
appear also in the total decay amplitudes TM± (see Appendix E) and Pj(X) (X = D,C) are
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4.1. Process and formalism

the propagators of the intermediate neutrinos Nj in the two channels

Pj(D) =
1[

(pM − p1)2 −M2
Nj

+ iΓNjMNj

] , (4.8a)

Pj(C) =
1[

(pM − p2)2 −M2
Nj

+ iΓNjMNj

] . (4.8b)

The overall constant K2
M appearing in Eqs. (4.7) is

K2
M = G4

Ff
2
Mf

2
M ′ |VQuQdVquqd |2 , (4.9)

where fM and fM ′ are the decay constants of M± and M
′∓, and VQuQd and Vquqd are the CKM

elements corresponding to M± and M
′∓ (the valence quark content of M+ is QuQ̄d; of M

′+ is
quq̄d).

Several symmetry relations exist among the normalized decay widths Γ̃±(XY ∗)ij, as given
in Eqs. (E.6)-(E.7) in Appendix E. The most important symmetry property is that the (2× 2)

matrices Γ̃M(DD∗) and Γ̃M(CC∗) are self-adjoint (and even equal if `1 = `2). The matrices

Γ̃M±(DC∗) and Γ̃M±(CD∗), which represent the (canonical) D-C channel interference contri-
butions to the decay widths Γ(M±), will turn out to be several orders of magnitude smaller

than the Γ̃M(DD∗) and Γ̃M(CC∗) matrices.

In our calculations we shall also need to know the total decay width Γ(N
(Ma)
j → all) ≡ Γ

(Ma)
Nj

[Eq.3.13] of the two Majorana neutrinos Nj as a function of the mass MNj , or more specif-

ically, the corresponding mixing factor K̃(Ma)
j [Eq.3.15] in our relevant on-shell mass range

[0.14− 6.3](GeV ) of the neutrino mass. The mixing factor in our relevant mass range is given
in figure B.2 in Appendix B.

On the other hand, the present upper bounds for the squares |B`N |2 of the heavy-light
mixing matrix elements, in our range of interest 0.14 GeV < MN < 6.3 GeV, can be inferred
from Ref. [45]. The present upper bounds for |BeN |2, in the mentioned range of MN , are
largely determined by the neutrinoless double beta decay experiments [49, 50] (0νββ). The
upper bounds for |BµN |2 come from searches of peaks in the spectrum of µ in pion and kaon
decays [51] and from decay searches [51–56]. The upper bounds for |BτN |2 come from CC
interactions (if τ is produced) and from NC interactions [56–58]. In Table 4.1 we present the
present upper bounds on |B`N |2 for specific chosen values of MN within the mentioned interval.
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4. The Rare M+ → e+e+M ′− Decay

Table 4.1: Present upper bounds for the squares |B`N |2 of the heavy-light mixing matrix elements, for various
specific values of MN .

MN [GeV ] |BeN |2 |BµN |2 |BτN |2
0.1 (1.5± 0.5)× 10−8 (6.0± 0.5)× 10−6 (8.0± 0.5)× 10−4

0.3 (2.5± 0.5)× 10−9 (3.0± 0.5)× 10−9 (1.5± 0.5)× 10−1

0.5 (2.0± 0.5)× 10−8 (6.5± 0.5)× 10−7 (2.5± 0.5)× 10−2

0.7 (3.5± 0.5)× 10−8 (2.5± 0.5)× 10−7 (9.0± 0.5)× 10−3

1.0 (4.5± 0.5)× 10−8 (1.5± 0.5)× 10−7 (3.0± 0.5)× 10−3

2.0 (1.0± 0.5)× 10−7 (2.5± 0.5)× 10−5 (3.0± 0.5)× 10−4

3.0 (1.5± 0.5)× 10−7 (2.5± 0.5)× 10−5 (4.5± 0.5)× 10−5

4.0 (2.5± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

5.0 (3.0± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

6.0 (3.5± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

The upper bounds have in some cases strong dependence on the precise values of MN , and
for further details we refer to the corresponding figures in Ref. [45].

4.2 The decay widths and CP asymmetry for the LV semihadronic
decays of pseudoscalars

Here we shall use the results of Sec. 4.1, and a combination of analytic and numerical
evaluations, in order to obtain the results for the decay widths S± and the CP asymmetry
ratios ACP of the discussed semihadronic LV decays of pseudoscalar mesons M± :

S±(M) ≡ Γ(M−)± Γ(M+) , (4.10)

ACP(M) ≡ S−(M)

S+(M)
≡ Γ(M−)− Γ(M+)

Γ(M−) + Γ(M+)
, (4.11)

where we use the notations of Eq. (4.2). S+(M) represents the total (sum) of the decay widths
of M+ and M− for these rare LV decays, while S−(M) is the corresponding (CP-violating)
difference. The ratio ACP(M) in Eq. (4.11) is the usual measure of the relative CP violation
effect. We adopt again the convention MN2 > MN1 , and we reintroduce the following notations
related with the heavy-light neutrino mixing elements B`1Nj and B`2Nj and their phases:

κ`1 =
|B`1N2|
|B`1N1|

, κ`2 =
|B`2N2|
|B`2N1|

, (4.12a)

B`kNj ≡ |B`kNj |eiφkj (k, j = 1, 2) , (4.12b)

θij = (φ1i + φ2i − φ1j − φ2j) (i, j = 1, 2) . (4.12c)

For example, if `1 = `2 = µ, then θ21 = 2(φµ2−φµ1) = 2(arg(BµN2)−arg(BµN1)). Here we shall
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4.2. The Branching ratio and CP asymmetry

not write explicitly the D-C channel interference contributions to the quantities Eqs.(4.10)-
(4.11), as our numerical calculations give us for them contributions which are several orders of
magnitude smaller that the contributions from the D channel and from the C channel.

The resulting sums S+(M) ≡
(
Γ(M−) + Γ(M+)

)
of the decay widths can then be written

only in terms of the normalized decay widths Γ̃M(XX∗)11, Γ̃M(XX∗)22 and ReΓ̃M(XX∗)12

(where X = D;C), and in terms of the phase difference θ21

S+(M) ≡
(
Γ(M−) + Γ(M+)

)
= 2(2− δ`1`2)|B`1N1|2|B`2N1|2

{
Γ̃M(DD∗)11

[
1 + κ2

`1
κ2
`2

Γ̃M(DD∗)22

Γ̃M(DD∗)11

+ 2κ`1κ`2 cos θ21δ1

]

+Γ̃M(CC∗)11

[
1 + κ2

`1
κ2
`2

Γ̃M(CC∗)22

ΓM(CC∗)11

+ 2κ`1κ`2 cos θ21δ1

]
+ (D − C terms)

}
, (4.13)

where we used the notations Eq.(4.12), and the quantity δ1 measures the effect of N1-N2 overlap
contributions

δj ≡
ReΓ̃M(XX∗)12

Γ̃M(XX∗)jj
, (X = D;C; j = 1; 2) . (4.14)

It is expected that δj ≈ 0 when ∆MN � ΓNj because in such a case the overlap (interference)
effects of the N1 and N2 exchanges are expected to be absent due to a large distance between
the two “bumps” of the neutrino propagators.

The (CP-violating) difference S−(M) ≡ (Γ(M−)− Γ(M+)) of the LV rare decays is:

S−(M) ≡
(
Γ(M−)− Γ(M+)

)
= 4(2− δ`1`2)|B`1N1||B`2N1||B`1N2||B`2N2|

×
{

sin θ21

[
ImΓ̃M(DD∗)12 + ImΓ̃M(CC∗)12

]
+ (D − C terms)

}
. (4.15)

We can see that CP violation in these decays is proportional to the CP-odd phase difference
θ21 defined in Eq. (4.12c). The other factor in this CP violation is the imaginary part of

Γ̃M(DD∗)12 + Γ̃M(CC∗)12. This factor contains ImP1(D)P2(D)∗ and ImP1(C)P2(C)∗ which
was investigated in Eq. (3.35) and given in detail in appendix D.

The decay widths ΓNj are very small in comparison with the masses MNj , due to the
mixing suppression (in general ΓNj � 1 eV). Therefore, the absolute value of the square of the
intermediate neutrino propagator can be approximated to a high degree of accuracy by the
delta function as in Eq.(3.34)

|Pj(D)|2 =

∣∣∣∣∣ 1

(pM − p1)2 −M2
Nj

+ iΓNjMNj

∣∣∣∣∣
2

≈ π

MNjΓNj
δ((pM − p1)2 −M2

Nj
) ; (j = 1, 2; ΓNj �MNj) , (4.16)

and analogous equation for |Pj(C)|2. Therefore, in the integration d3, the part of integration
dp2

N (pN = pM−p1 in D channel; pN = pM−p2 in C channel) becomes a trivial integration over
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4. The Rare M+ → e+e+M ′− Decay

a delta function, and the expressions for the diagonal elements Γ̃M(DD∗)jj and Γ̃M(CC∗)jj
can be calculated analytically, cf. Appendix E

Γ̃M(DD∗)jj =
K2
MM

5
M

128π2

MNj

ΓNj
λ1/2(1, xj, x`1)λ1/2

(
1,
x
′

xj
,
x`2
xj

)
×

Q(xj;x`1 , x`2 , x
′
) (j = 1 or j = 2) , (4.17)

and Γ̃M(CC∗)jj is obtained from the expression (4.17) by the simple exchange x`1 ↔ x`2

Γ̃M(CC∗)jj = Γ̃M(DD∗)jj(x`1 ↔ x`2) . (4.18)

In Eq. (4.17) we used the notations

λ(y1, y2, y3) = y2
1 + y2

2 + y2
3 − 2y1y2 − 2y2y3 − 2y3y1 , (4.19a)

xj =
M2

Nj

M2
M

, x`s =
M2

`s

M2
M

, x
′
=
M2

M ′

M2
M

, (j = 1, 2; `s = `1, `2) , (4.19b)

and the function Q(xj;x`1 , x`2 , x
′
) is given in Appendix E. In the special case `1 = `2, the

expression for Γ̃M(DD∗)jj is somewhat simpler and can be deduced, e.g., from Ref. [25]. The
expressions (4.17) and (4.18) are used in the evaluation of the sum S+(M), Eq. (4.13), of the
rare decay widths of M±. In Eq. (4.13), the contributions of the N1-N2 overlap effects are
parametrized in the function δ1 defined in Eq. (4.14), and it was evaluated in figure 3.11 and
Table 3.2 of Sec.3. It is interesting that the numerical results for δ(y) for the considered decay
are indistinguishable from those of the decay π± → e±e±µ∓ν in Sec.3. Further, δ(y) (y ≡ ∆MN

ΓN
,

see Sec.3 Eqs. 3.37) is independent of M± and M ′∓, as long as `1, `2 = e, µ.
In order to evaluate the CP-violating difference S−(M), Eq. (4.15), of the rare decay widths

M±, the evaluation of the quantity ImΓM(XX∗)12 (X = D;C) is of central importance. In
the integrand of ImΓM(XX∗)12 we have to take into account equations (4.7) and (3.35) and
these lead to the result:

ImΓ̃M(DD∗)12 = η
K2
MM

5
M

128π2

MN1MN2

(MN2 +MN1)∆MN

×
2∑
j=1

λ1/2(1, xj, x`1) , λ1/2

(
1,
x
′

xj
,
x`2
xj

)
Q(xj;x`1 , x`2 , x

′
) , (4.20a)

ImΓ̃M(CC∗)12 = ImΓ̃M(DD∗)12(x`1 ↔ x`2) , (4.20b)

where we denoted ∆MN ≡ MN2 −MN1 > 0. In Eqs. (4.20) we introduced an overall factor η
which accounts for the N1-N2 overlap effects when ∆MN 6� ΓN , i.e., for the situation when
the naive approximation for ImP1(D)P2(D)∗ in Eq.(3.35b) with η = 1, is not justified.
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4.2. The Branching ratio and CP asymmetry

The canonical decay matrix elements Γ̃M(XY ∗)ij, Eq. (4.7), were evaluated numerically, by
means of two differents codes (Vegas and Mathematica), using finite (small) widths ΓNj in the
propagators.
The numerical simulation gave for δ(y) and η(y) equal results for (π± → e±e±µ∓ν) leptonic
decay (3.10), (3.1) and for (M± → `±1 `

±
2 M

′∓) semihadronic decay (3.11),(3.2). For the results,
see Tables 3.1, 3.2 and Figs. 3.10 and 3.11.

The numerical simulations gave us the following results:

• The analytic expression (4.17) for Γ̃
(X)
M (DD∗)jj (∝ 1/ΓNj) is valid.

• The analytic expression (4.20) with η = 1 for ImΓ̃M(DD∗)12 (∝ 1/∆MN) is valid when

∆MN � ΓNj , and η = y2

y2+1
for ∆MN ∼ ΓNj (see Eq. 3.36, Sec.3)

• The direct-crossed channel (DC∗ and CD∗) interference contributions to the sum and
the difference of the rare decay widths S±(M) of M± are by several orders of magnitude
smaller that the corresponding direct (DD∗) and crossed (CC∗) channel contributions to
these quantities, in all cases.1

The rare LV semihadronic decay widths of M±, cf. S+(M) of Eq. (4.13), at first sight appear
to be quartic in the heavy-light mixing elements |B`N | and thus very suppressed.

However, they are proportional to the expressions Γ̃M(DD∗)jj, Eq. (4.17), which are propor-
tional to 1/ΓNj due to the on-shellness of the intermediate Nj’s. This 1/ΓNj is proportional to

1/K̃j ∼ 1/|B`Nj |2 according to Eqs. (3.13)-(3.15). Hence this on-shellness of Nj’s makes these
rare process decay widths significantly less suppressed

Γ̃M(DD∗)jj ∝ 1/ΓNj ∝ 1/K̃j ∝ 1/|B`Nj |2 ⇒ S+(M) ∝ |B`Nj |2 . (4.21)

However, the expressions (4.20), which appear in the CP-violating decay width difference
S−(M) (4.15), are suppressed by mixings as ∼ |B`N |4. This means that in general S−(M)
is much smaller than the decay width S+(M) ∝ |B`Nj |2. Nonetheless, Eqs. (4.20) show that
S−(M) is proportional to 1/∆MN , and it is this aspect that represents the opportunity to detect
appreciable CP violation in such decays when ∆MN is sufficiently small. While in general we
expect ∆MN � ΓNj , there exists a well-motivated model νMSM [29–34] with two heavy sterile
almost degenerate neutrinos (where the relation ∆MN 6� ΓNj is possible) in the mass range
0.1 GeV . MNj . 101 GeV. Our calculations thus suggest that in such a model the CP
violation effects may be appreciable, namely for ∆MN ∼ ΓN we obtain S−(M) ∼ S+(M) and
thus ACP(M) ∼ 1. These conclusions are similar to those of CP violation in π± → e±e±µ∓ν
decays of Sec.3.

For these reasons, from now on we consider the case of near degeneracy: ∆MN 6� ΓN
(∆MN

ΓN
= y ≈ 1). In this case, several formulas written by now in this Section get even more

1 For example, when M± = K± and M
′∓ = π∓, and we choose in numerical calculation ΓN ∼ 10−3 GeV ∼ ∆MN , the

Γ̃(DD∗)ij and Γ̃(CC∗)ij contributions are by about two orders of magnitude larger than the D-C interference contributions

Γ̃±(DC∗)ij . When ΓN and ∆MN are decreased further (ΓN ∼ ∆MN ), the Γ̃(DD∗)ij and Γ̃(CC∗)ij contributions increase (they

are ∝ 1/ΓN ), while the D-C interference contributions Γ̃±(DC∗)ij remain approximately unchanged and become thus relatively
insignificant.
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4. The Rare M+ → e+e+M ′− Decay

simplified, in particular the expressions (4.17), (4.14), (4.20). Namely, they can be written in
terms of the common canonical decay width S ratio2

S(x;x`1 , x`2 , x
′) ≡ 3π

4

K2
MMM

G2
F

1

x2
λ1/2(1, x, x`1)λ1/2

(
1,
x′

x
,
x`2
x

)
Q(x;x`1 , x`2 , x

′) ,(4.22)

where we use the notations (4.19) and

x ≡ M2
N

M2
M

≡ x2 ≈ x1 , (4.23)

where we denoted by MN ≡ MN2 ≈ MN1 . The function Q is the same as in Eqs. (4.17)
and (4.20), and is given explicitly in Appendix E. In practice we will need two variants of

this function S, namely the one for the DD∗ contributions (S
(D)

) and the one of the CC∗

contributions (S
(C)

)

S
(D)

(x) ≡ S(x;x`1 , x`2 , x
′) , (4.24a)

S
(C)

(x) ≡ S(x;x`2 , x`1 , x
′) . (4.24b)

When `1 = `2 (e.g., when both final leptons are electrons; or both are muons), the two functions

S
(D)

and S
(C)

coincide. It is straightforward to check that the expressions of Eqs. (4.17), (4.14),
(4.20) can then be rewritten in the considered case of nearly degenerate N1 and N2 in terms

of these common functions S
(X)

(X = D,C) and of the heavy-light mixing expressions K̃Ma
j .

Γ̃M(DD∗)jj =
1

K̃Ma
j

S
(D)

(x) ; Γ̃M(CC∗)jj =
1

K̃Ma
j

S
(C)

(x) (4.25a)

ReΓ̃M(DD∗)12 = δ(y)
2

(K̃Ma
1 + K̃Ma

2 )
S

(D)
(x) ; ReΓ̃M(CC∗)12 = δ(y)

2

(K̃Ma
1 + K̃Ma

2 )
S

(C)
(x)

(4.25b)

ImΓ̃M(DD∗)12 =
η(y)

y

2

(K̃Ma
1 + K̃Ma

2 )
S

(D)
(x) ; ImΓ̃M(CC∗)12 =

η(y)

y

2

(K̃Ma
1 + K̃Ma

2 )
S

(C)
(x)

(4.25c)

where the definition y ≡ ∆MN/ΓN is kept (we recall: ΓN ≡ 1
2
(ΓN1 + ΓN2)).

After some straightforward algebra, we can rewrite the sum and difference S±(M) of decay

widths, Eqs. (4.10), as expressions proportional to these canonical decay widths S
(X)

(X =

D,C). The proportionality factors involve the heavy-light mixing factors |B`Nj | and K̃Ma
j ,

and the overlap functions δ(y) and η(y)/y tabulated in Tables 3.2 and 3.1. The resulting
expressions are:

2Canonical: in these sense that it has no dependence on mixings.
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4.2. The Branching ratio and CP asymmetry

S+(M) ≡ Γ(M− → `−1 `
−
2 M

′+) + Γ(M+ → `+
1 `

+
2 M

′−) = 2(2− δ`1`2)× (4.26a)

×

[
2∑
j=1

|B`1Nj |2|B`2Nj |2

K̃Ma
j

+ 4δ(y)
|B`1N1||B`2N1||B`1N2 ||B`2N2|

(K̃Ma
1 + K̃Ma

2 )
cos θ21

](
S

(D)
(x) + S

(C)
(x)
)

S−(M) ≡ Γ(M− → `−1 `
−
2 M

′+)− Γ(M+ → `+
1 `

+
2 M

′−)

= 8(2− δ`1`2)
|B`1N1 ||B`2N1||B`1N2||B`2N2|

(K̃Ma
1 + K̃Ma

2 )
sin θ21

η(y)

y

(
S

(D)
(x) + S

(C)
(x)
)
. (4.26b)

The resulting CP violation ratio ACP(M), Eq. (4.11), can then be written in a form involving

only the heavy-light mixing factors |B`Nj | and K̃Ma
j , and the overlap functions δ(y) and η(y)/y

tabulated in Tables 3.2 and 3.1:

ACP(M) ≡ S−(M)

S+(M)
≡ Γ(M− → `−1 `

−
2 M

′+)− Γ(M+ → `+
1 `

+
2 M

′−)

Γ(M− → `−1 `
−
2 M

′+) + Γ(M+ → `+
1 `

+
2 M

′−)

=
sin θ21[

1
4

∑2
j=1

|B`1Nj |
2|B`2Nj |

2

|B`1N1
||B`2N1

||B`1N2
||B`2N2

|
(K̃Ma

1 +K̃Ma
2 )

K̃Ma
j

+ δ(y) cos θ21

] η(y)

y
(4.27a)

=
sin θ21{

1
4

[
κ`1κ`2

(
1 +

K̃Ma
1

K̃Ma
2

)
+ 1

κ`1κ`2

(
1 +

K̃Ma
2

K̃Ma
1

)]
+ δ(y) cos θ21

} η(y)

y
. (4.27b)

In Eq. (4.27b) we used the notations (4.12a).

When `1 = `2 (≡ `), the formulas (4.26)-(4.27) simplify because then S
(D)

= S
(C)

= S, and
B`1Nj = B`2Nj = B`Nj , κ`1 = κ`2 = κ`.

S+(M) = = 4

[
2∑
j=1

|B`Nj |4

K̃Ma
j

+ 4δ(y)
|B`N1|2|B`N2|2

(K̃Ma
1 + K̃Ma

2 )
cos θ21

]
S(x) , (4.28a)

S−(M) = 16
|B`N1 |2|B`N2|2

(K̃Ma
1 + K̃Ma

2 )
sin θ21

η(y)

y
S(x) , (4.28b)

ACP(M) =
sin θ21{

1
4

[
κ2
`

(
1 +

K̃Ma
1

K̃Ma
2

)
+ 1

κ2
`

(
1 +

K̃Ma
2

K̃Ma
1

)]
+ δ(y) cos θ21

} η(y)

y
. (4.28c)
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4. The Rare M+ → e+e+M ′− Decay

From these expressions and Table 3.1 we can deduce:

1. When y becomes large (y > 10, i.e., ∆MN > 10ΓN), the CP asymmetries (4.26b)-(4.27)
become suppressed by the small η(y)/y factor.

2. When y is smaller (y < 10, e.g., 0.33 ΓN < ∆MN < 5 ΓN), then the factor η(y)/y is

comparable with unity, the expressions S±(M) become ∼ |B`Nj |2S
(D)

(x)

(where x ≡ M2
N/M

2
M ; ` = e, µ; note that K̃Ma

j ∼ |B`Nj |2); and the CP violation ratio
ACP(M) becomes ∼ 1.

In Ref. [25], the decay widths for these processes, in the case of one (on-shell) neutrino
N , Γ(M+) ≡ Γ(M+ → `+`+M

′−), were considered. Since in our case S+(M) ≈ 2Γ(M+),3

the conclusions in Ref. [25] on the size and measurability of Γ(M+) can be taken over as
the conclusions on the size and measurability of S+(M) here. If, in addition, ∆MN 6� ΓN
(say: 0.33 < y ≡ ∆MN/ΓN < 5), these conclusions are valid also for the measurability of the
CP-violating decay width difference S−(M) provided that the phase difference |θ21| ∼ 1.4

4.3 The effective branching ratios

The branching ratios of experimental significance for the LV decays M± → `±1 `
±
2 M

′∓ are:

Br(M) ≡ S+(M)

[Γ(M− → all) + Γ(M+ → all)]
≈ S+(M)

2Γ(M− → all)
, (4.29a)

ACP(M)Br(M) =
S−(M)

[Γ(M− → all) + Γ(M+ → all)]
≈ S−(M)

2Γ(M− → all)
, (4.29b)

where we use the notation of Eqs. (4.10)-(4.11) and (4.2). We also used the fact that in
the considered cases of pseudoscalar mesons M± the total decay widths Γ(M− → all) and
Γ(M+ → all) are practically equal. Br(M) represents the average of the branching ratios of
M+ and M− for these LV decays, while ACP(M)Br(M) is the corresponding branching ratio
for the (CP-violating) difference. The corresponding canonical branching fraction Br(M) is
obtained by dividing the canonical decay width (4.22) by 2Γ(M− → all)

Br(x;x`1 , x`2 , x
′) ≡ S(x;x`1 , x`2 , x

′)

2Γ(M− → all)
(4.30)

=
3π

8

K2
MMM

G2
FΓ(M− → all)

1

x2
λ1/2(1, x, x`1)λ1/2

(
1,
x′

x
,
x`2
x

)
Q(x;x`1 , x`2 , x

′) ,

3 when neglecting the N1-N2 overlap effects ∝ δ(y) in S+(M)
4 We recall that if 0.33 < y < 5, we have ACP(M) ∼ 1 and thus S−(M) ∼ S+(M).
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4.3. The effective branching ratios

where the notations (4.19) and (4.23) are used. We have two variants of this function: the

one for the DD∗ contributions (Br
(D)

) and the other one of the CC∗ contributions (Br
(C)

),

which are obtained by dividing by 2Γ(M− → all) the expressions S
(D)

and S
(C)

of Eqs. (4.24),

respectively. When `1 = `2, the two functions Br
(D)

and Br
(C)

coincide (≡ Br).
Nonetheless, in experiments we must also take into account the acceptance (suppression)

factor in the detection of these decays, which appears due to the small length of the detector
in comparison to the relatively large lifetime of the (on-shell) sterile neutrinos Nj.

In Appendix C we obtained for the acceptance factor PNj the following estimates and upper
bounds relevant for the K decays (MN ≈ 0.25 GeV), D and Ds decays (MN ≈ 1 GeV), and B
and Bc decays (MN ≈ 3 GeV), see Eqs. (C.4).

The upper bounds for PNj in Eqs. (C.4) are written as a sum of the contributions of upper
bounds from |BeNj |2, |BµNj |2 and |BτNj |2 separately. Further, the contributions of |BτNj |2 are
included in Eqs. (C.4) optionally, in the parentheses, because the upper bounds of the mixings
|BτNj |2 are still very high and are expected to be reduced significantly in the foreseeable future.
The upper bounds which give results higher than one are replaced by one (100), because the
acceptance (decay probability) PNj can never be higher than one by definition.

From now on in this Section, we shall assume the following:

|B`N1|2 ∼ |B`N2|2 ≡ |B`N |2 (4.31a)

⇒ K̃Ma
1 ∼ K̃Ma

2 ≡ K̃Ma . (4.31b)

In addition, we consider that it is the flavor ` which has the dominant (largest) mixing |B`N |2.
Then we have:

K̃Ma ≈ N`N |B`N |2 ∼ 10 |B`N |2 . (4.32)

The dominant branching ratios Br(M) and ACP(M)Br(M) will then be, according to the
obtained expressions (4.26) and (4.28) (together with the definitions (4.29)-(4.30)), those which
have in the final state two equal charged leptons ` with dominant mixing: M± → `±`±M

′∓.
The theoretical branching ratios Br(M) and ACP(M)Br(M), Eqs. (4.29), can be obtained

by dividing Eqs. (4.28a)-(4.28b) by 2Γ(M− → all). Using in addition Eqs. (4.31)-(4.32) and
the definition (4.30), this gives:

Br(M) ≈ 8
|B`N |4

K̃
Br(x) ∼ Br(x)|B`N |2 , (4.33a)

ACP(M)Br(M) ≈ 8
|B`N |4

K̃
sin θ21

η(y)

y
Br(x) ∼ Br(x)|B`N |2 sin θ21 , (4.33b)

where in the last relation we took into account that η(y)/y ∼ 1 (since ∆MN 6� ΓN in our
considered cases).
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4. The Rare M+ → e+e+M ′− Decay

The effective (i.e., experimental) branching ratios Br(eff)(M) = PNBr(M) andACP(M)Br(eff)(M)
can be estimated, in the considered case of Eqs. (4.31)-(4.32), in the following way (using
Eqs. (C.2) and (4.33)):

Br(eff)(M) ≡ PNBr(M) = A(MN)K̃Br(M) ≈ A(MN)K̃
(

8|B`N |4

K̃
Br(x)

)
=

[
8A(MN)Br(x)

]
|B`N |4 , (4.34a)

ACP(M)Br(eff)(M) ≡ PNACP(M)Br(M) ≈ A(MN)K̃
(

8|B`N |4

K̃
sin θ21

η(y)

y
Br(x)

)
= 8A(MN)|B`N |4 sin θ21

η(y)

y
Br(x) ∼

[
4A(MN)Br(x)

]
|B`N |4 sin θ21 ,

(4.34b)

where in the last line of Eq. (4.34b) we took into account that η(y)/y ≡ y2

y2+1
≤ 1

2
(the maximun

achieved at y = 1, i.e. when ∆MN = ΓN). Furthermore, since `1 = `2 = ` in the considered

case, the canonical branching fractions are equal: Br
(C)

(x) = Br
(D)

(x) ≡ Br(x); and we recall
that x ≡ (MN/MM)2. We see that in Eqs. (4.34) the most important factor at |B`N |4 is the
“effective” canonical branching ratio:

Breff(MN) ≡ 8A(MN)Br(x) . (4.35)

Only in the case of B± and B±c LV decays we could have PN ∼ 1, Eq. (C.4d), and in such a

case Eqs. (4.34) do not apply, but rather Eqs. (4.33).
In Figs. 4.2,4.3,4.4,4.5 and 4.7 we present the effective canonical branching ratios Eq.(4.35)

as a function of the neutrino mass MN , for various considered LV decays of the type M± →
`±`±M

′∓, where: M = K in Fig. 4.2; M = D in Fig. 4.3; M = Ds in Fig. 4.4; M = B
in Fig. 4.5 and M = BC in Fig. 4.7. In general ` = e, µ. We took L = 1 m and γN = 2.
In addition, for the case when PN ∼ 1 and consequently the estimates Eqs. (4.33) apply, we
present in Figs. 4.6 and 4.8 the theoretical branching ratios Br(x) as a function of MN for B±

and B±c decays, respectively.

On other hand, our formulas permit also evaluation of Breff and Br(x) for the decays M± →
`±1 `
±
2 M

′∓ when `1 6= `2. And also when the final leptons are τ leptons (and M± = B± or B±c ),
with the values similar to those in Figs. 4.5, 4.6, 4.7 and 4.8, except that the range of MN is
now significantly shorter: MM ′ +Mτ < MN < MM −Mτ .

For the CKM matrix elements and the meson decay constants, appearing in K2
M factor

defined in Eq. (4.9), and for masses and lifetimes of the mesons, we used the values of Ref. [59];
and for the decay constants fB and fBc we used the values of Ref. [60]: fB = 0.196 GeV,
fBc = 0.322 GeV. We note that CKM suppresion is significantly stronger in the case of B
meson (|Vub| = 0.004) than in the case of BC meson (|Vcb| = 0.04). DS and π mesons have
no CKM suppresion (|Vcs| ≈ |Vud| ≈ 0.98), while K and D have minor CKM suppresion
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4.3. The effective branching ratios

(|Vus| ≈ |Vcd| ≈ 0.225). We should also keep in mind that if M± is more massive, the final
particle phase space is larger and thus Γ(M±) is larger (but Br is lower); MN can be for such
M± larger, too (and thus PN).

0.0 0.1 0.2 0.3 0.4 0.5 0.60.1
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{ � e,Μ
K+ ® Π- + 2 e+

K+ ® Π- + 2 Μ+

Figure 4.2: The effective canonical branching ratio (4.35) for the K± → `±`±π
′∓ decays (` = e, µ) as a

function of the Majorana neutrino mass MN .
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Figure 4.3: The effective canonical branching ratio (4.35) as a function of the Majorana neutrino mass MN

for the LV decays of D± mesons. The solid lines are for ` = e, and the dashed lines for ` = µ.
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Figure 4.4: The effective canonical branching ratio (4.35) as a function of the Majorana neutrino mass MN

for the LV decays of D±s mesons.The solid lines are for ` = e, and the dashed lines for ` = µ.
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Figure 4.5: The effective canonical branching ratio (4.35) as a function of the Majorana neutrino mass MN

for the LV decays of B± mesons. Here is not possible distinguish between ` = e, µ.
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Figure 4.6: The theoretical canonical branching ratios (4.30) for the B± mesons decays, where ` = e, µ (no
discernible difference between the two cases).
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Figure 4.7: The effective canonical branching ratio (4.35) as a function of the Majorana neutrino mass MN

for the LV decays of the charmed mesons B±c . The solid lines are for ` = e, and the dashed lines
for ` = µ (no discernible difference between the two cases).

0 1 2 3 4 5 6 710-7

10-6

10-5

10-4

0.001

MNHGeVL

Br

{ � e,Μ
Bc+ ® Π- + 2 {+

Bc+ ® K- + 2 {+

Bc+ ® D- + 2 {+

Bc+ ® Ds- + 2 {+

Figure 4.8: The theoretical canonical branching ratio (4.30) for the B±c mesons decays, where ` = e, µ (no
discernible difference between the two cases).
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4.4. The Future searches of semihadronic decays of K,D,Ds, B,Bc

In Table 4.2 we display some values of the factor Breff , for the representative values of MN

in the decays M± → `±`±M
′∓.

Table 4.2: Values of the factor 8A(MN )Br(x) (with L = 1 m and γN = 2) for some of the considered LV

decays: M± → `±`±π
′∓. We chose MN such that the maximal value is obtained (this value of

MN is given in parentheses, in GeV). For the K decay, the two different values are given for ` = e
and ` = µ. For all other decays ` = µ is chosen (the values for ` = e are similar).

M±: K± (` = e) K± (` = µ) D± D±s B± B±c
8ABr: 13.5 (0.38) 7.5 (0.35) 8. (1.39) 159. (1.47) 1.93 (3.9) 395. (4.7)

Let us now take, as an example, the decays D±s → µ±µ±π∓,5 and let us assume that
|BµN |2 is the dominant mixing (i.e., ` = µ). Then Eqs. (4.34) and Table 4.2 imply that the
effective (experimentally measurable) sum PNBr(Ds) and difference PNACP(Ds)Br(Ds) of the
branching ratios for these decays are

Br(eff)(Ds) ≡ PNBr(Ds) ∼ 102|BµN |4 ,
(4.36a)

ACP(Ds)Br(eff)(Ds) ≡ PNACP(Ds)Br(Ds) ∼ 102|B`N |4 sin θ21
η(y)

y
∼ 102|B`N |4 sin θ21 .

(4.36b)

Taking into account that in such decays the present rough upper bound on the mixing is
|BµN |2 . 10−7, Eqs. (4.36) imply that PNBr(Ds) . 10−12. The proposed experiment at
CERN-SPS [35] would produce the numbers of D and Ds mesons by several orders higher than
1012 and would thus be able to explore whether there is a production of the sterile Majorana
neutrinos Nj. Furthermore, if there are two almost degenerate neutrinos (as is the case in the
νMSM model [29–31]), then in such a case it is possible that y(≡ ∆MN/ΓN) 6� 1, and thus
η(y)/y ∼ 1. Then the estimate (4.36b) would imply that the CP-violating difference of effective
branching ratios PNACP(Ds)Br(Ds) is of the same order as the sum PNBr(Ds) (provided that
the phase difference |θ21| 6� 1). This means that if experiments discover the aforementioned
νMSM-type Majorana neutrinos, they will possibly discover also CP violation in the Majorana
neutrino sector.

4.4 The Future searches of semihadronic decays of K,D,Ds, B,Bc

In this section we analyze the oportunity to detect the CP violation in future experiments, as
SHiP (Search for Hidden Particles) [36]. Although SHiP at this moment is just a proposal,
however, the scientific community is hopeful that SHiP starts to run in 2021. In the particular
case of semihadronic meson decays, SHiP in the original version cannot detect the primary
decay (M+ → `+Nj), because SHiP will not have a particle detector in the primary collision
region. Therefore, SHIP could only detect the secondary decay (Nj → `+

2 M
′−). However, there

are hopes that an upgrade of the experiment can be performed, where the principal vertex can
be detected [61].

5 This is one of the preferred decay modes proposed at CERN-SPS [35].
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4. The Rare M+ → e+e+M ′− Decay

Here we shall estimate the region of neutrino mixing |B`N |2, where the CP violation could be
detected (when η(y)/y ∼ 1) in the decays M+ → `+

1 `
+
2 M

′− mediated by two almost degenerate
Majorana neutrinos N1 and N2. To date, the experiments provide less restrictive upper bounds
for |BµN |; therefore, we are interested in the CP violation in the decays B±C → µ±µ±π∓ where
the branching ratios can be larger, and we shall considers.

|BµN | � |BeN |, |BτN | . (4.37)

In addition we shall assume |BµN1|2 ≈ |BµN2 |2 ≡ |BµN |2.

In order to detect at least one event, we have to satisfy the next two conditions:

1. The quantity |ACP(M)|Br(eff)(M) times NM have to be greater than 1 (where NM is the
number of M± produces):

|ACP(M)|Br(eff)(M) ≥ 1

NM

(4.38)

2. The mixing elements |BµN |2 cannot be bigger than experimental limits (EL) given in [45].

In Eq. (4.38) NM is the number of mesons produced in the experiment in a large period of
time.
The left-hand side of Eq. (4.38) is given by Eqs. (4.34)

|ACP(M)|Br(eff)(M) ≤
[
4A(MN)Br(x)

]
|BµN |4 sin θ21

Both aforementioned conditions, have to be fulfilled simultaneously and can be summarized
in one inequality, this inequality leads to found a restriction over the mixing |BµN |2:

EL ≥ |BµN |2 ≥
(

1

4 NM A(MN) Br(x) sin θ21

) 1
2

, (4.39)

where EL is the present upper bound on |BµN |2.

The number of mesons Bc and B expected in SHiP is bigger than 1012 in five years, and
the number of mesons Ds is around 1017 in five years [61].

In Figs. 4.9-4.14 we show the mixing region (MRS) that satisfies the inequality given in
Eq. (4.39) for decays of mesons Bc, B and Ds , where we used sin θ21 = 1.
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Bc± � Μ± Μ± Π¡
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Bc± � Μ± Μ± Ds¡

1 2 3 4 5 610-9

10-7

10-5

0.001

MN HGeVL

ÈB ΜN
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Figure 4.9: Here the light grey (online green) region represents the values for which CP violation can be
observed at SHiP. Left-hand: B±c → µ±µ±π∓. Right-hand: B±c → µ±µ±D∓s . The dashed line
correspond to |ACP(M)|Br(eff)(M) and Black line correspond to experimental limits. Here we
used NM = 1012, ∆MN = ΓN and sinθ21 = 1.
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Figure 4.10: The superposition of figures in 4.9.

In Fig. 4.10 we can see three different regions. The region in grey (online: red) corresponds
to MRS covered for B±c → µ±µ±π∓ and B±c → µ±µ±D∓s simultaneously, the light grey (online:
green) region is covered only for B±c → µ±µ±π∓ , and the dark grey (online: blue) is covered
only for B±c → µ±µ±D∓s .
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B± � Μ± Μ± Π¡
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Figure 4.11: The same as in Fig. 4.9, but for decays of B± instead of B±C .
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Figure 4.12: The superposition of figures in 4.11.

Figure 4.12 give analogous results, but now for B± decays (instead of BC). In comparison
with Fig. 4.10, these regions are significantly smaller now, due to strong CKM suppresion
factor of B (|Vub| ≈ 0.004, while in BC : |Vcb| ≈ 0.04).
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4.4. The Future searches of semihadronic decays of K,D,Ds, B,Bc

Ds± � Μ± Μ± þ¡
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Ds± � Μ± Μ± K¡
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Figure 4.13: The same as in Figs. 4.9, but for the decays of Left-hand: D±s → µ±µ±π∓. Right-hand:
D±s → µ±µ±K∓. Here we used NM = 1017.
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Figure 4.14: The superposition of figures in 4.13.

Fig. 4.14 gives analogous results for D±s → µ±µ±π∓ and D±s → µ±µ±K∓. In comparison
with B±C and B± decays the present upper bounds on |BµN |2 in the relevant MN -mass range
(MN < 2 GeV) are significantly lower, and therefore a larger number NM (of produced Ds) is
needed.

In all considered cases, we took into account that the experiment can detect both primary
and secondary decays.
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Chapter 5

Oscillation of heavy sterile neutrino in
decay of B → µeπ

In this Section we discuss neutrino oscillations in semihadronic decays (as presented in Sec-
tion. 4) of heavy pseudoscalar mesons (such as B, Bc, Ds) mediated by two on-shell Majorana
neutrinos Nj (j = 1, 2) which are almost mass degenerate. Similar effects have been inves-
tigated recently in leptonic decays of such mesons, in the work [62], where a quantum field
theoretical generalization of the Wigner-Weisskopf approach [63–65] was implemented and
used. Our approach is simpler, and the results obtained are hopefully easier to interpret. This
Section is based mainly in our work [66].

5.1 The decay width expression

In this Section we present formulas for the LV and LC semileptonic decays of charged B
mesons, of the type B → µeπ, mediated by heavy sterile on-shell neutrinos. The formulas for
the decay width of the LV decays of this type, B± → µ±e±π∓, in the case one heavy neutrino,
were presented in Ref. [25]. They were extended to the case of two almost degenerate heavy
on-shell neutrinos in Section. 4, in the context of CP violation. For a review we refer to [43].

The two flavor neutrinos νe and νµ (` = e, µ, τ) can be represented as

νe =
3∑
j=1

Bejνj +BeN1N1 +BeN2N2 + . . . , (5.1a)

νµ =
3∑
j=1

Bµjνj +BµN1N1 +BµN2N2 + . . . . (5.1b)

The coupling of these two flavor neutrinos to the corresponding charged leptons e± and µ± has
a part which contains the coupling to the heavy almost mass-degenerate neutrinos N1 and N2

LeWN =
g

2
√

2

[
ψ(e) /WL (BeN1N1 +BeN2N2) + h.c.

]
= K1

g

2
√

2
ψ(e) /WLN1 + h.c. (5.2a)

LµWN =
g

2
√

2

[
ψ(µ) /WL (BµN1N1 +BµN2N2) + h.c.

]
= K2

g

2
√

2
ψ(µ) /WLN2 + h.c.,(5.2b)

where we denoted by N1 and N2 the e- and µ-flavor analogs of the heavy neutrino mass
eigenfields Nj (j = 1, 2)

N1 = B11N1 + B12N2

N2 = B21N1 + B22N2 (5.3a)

Bαk ≡
1

Kα

Bαk, Kα ≡
√
|Bα1|2 + |Bα2|2 (α, k = 1, 2), (5.3b)
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5. Oscillation of heavy sterile neutrino.

where in Bαk the coefficients α = 1, 2 stand for e, µ, respectively; and k = 1, 2 for N1, N2,
respectively. The considered process for the LV decays B± → µ±e±π∓, with on-shell Nj’s
(j = 1, 2), are those of Fig. 5.1; and for the LC decays, B± → µ±e∓π± are those of Fig. 5.2.

(W )+

−(W )

Ν

+
B

µ

e

j N
p

+

+

B
p

pe

µ
p

π
 −

Figure 5.1: The LV decay B+ → µ+e+π− via exchange of an on-shell neutrinos Nj (j = 1, 2).

(W )+ Ν

+
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B

µ

e

j N
p

+

π
+

−

+(W )B

µp

e
p

Figure 5.2: The LC decay B+ → µ+e−π+ via exchange of an on-shell neutrinos Nj (j = 1, 2).

Although the LV decays have also the crossed channel (i.e., the ones where the vertices of µ
and e are exchanged), we assume here that the measurements can distinguish these two channels
(since µ 6= e), by reconstructing invariant masses from the detected final state particles.

For these processes, we shall consider the scenarios where the two heavy neutrinos N1 and
N2 are almost mass-degenerate (∆MN �MN ≡MN1) and are on-shell. We shall consider only
the neutrino couplings (5.2), with no components of the other mass eigenfields (thus no light
mass eigenfields ν1, ν2, ν3), because we shall assume that N1 and N2 are the only neutrinos
which are on-shell in these processes. This is then reflected in our definition of “hevay” flavor
states Nj, Eq. (5.3a). We stress that neutrinos which are off-shell in these processes give, in
relative terms, completely negligible contributions and will thus be ignored.

In the more general case of the LV decay M± → `±1 N → `±1 `
±
2 M

′∓ (`j = e, µ, τ ; M and M
′

pseudoscalars), with `1 6= `2 and neutrino N on-shell, can be written as

Γ(M± → `±1 N → `±1 `
±
2 M

′∓) = |B`1N |2|B`2N |2 Γ (`1 6= `2), (5.4)

where

Γ =
K2
MM

5
M

64π2

MN

ΓN
λ1/2(1, yN , y`1) λ1/2

(
1,
y
′

yN
,
y`2
yN

)
Q(yN ; y`1 , y`2 , y

′
) , (5.5)

and the notations used in Eq. (5.5) (the same used in Section. 4) are
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5.1. The decay width expression

K2
M = G4

Ff
2
Mf

2
M ′
|VQuQdVquqd |2 , (5.6a)

λ(y1, y2, y3) = y2
1 + y2

2 + y2
3 − 2y1y2 − 2y2y3 − 2y3y1 , (5.6b)

yN =
M2

N

M2
M

, y`s =
M2

`s

M2
M

, y
′
=
M2

M ′

M2
M

, (`s = `1, `2) , (5.6c)

and the function Q(yN ; y`1 , y`2 , y
′
) is given in Appendix E.

In Eq. (5.6a), fM and fM ′ are the decay constants, and VQuQd and Vquqd are the CKM matrix
elements of pseudoscalars M± and M

′∓.
We notice that in the considered specific case (`1 = µ and `2 = e) we have y`1 ≈ y`2 ≈ 0,

and the expression (E.9) simplifies i.e.,

Q(yN ; y`1 , y`2 , y
′) ≈ Q(yN ; 0, 0, y′) =

1

2
[yN(1− yN)] [yN − y′] . (5.7)

The result (5.4), (5.5), (5.6) and (E.9) can be written in an equivalent form

Γ(M± → `±1 N → `±1 `
±
2 M

′∓) =
1

ΓN
Γ(M± → `±1 N)Γ(N → `±2 M

′∓) (`1 6= `2), (5.8)

where the widths of the two decays are

Γ(M± → `±1 N) = |B`1N |2Γ(M± → `±1 N), (5.9a)

Γ(N → `±2 M
′∓) = |B`2N |2Γ(N → `±2 M

′∓), (5.9b)

and the expressions for the corresponding canonical widths Γ (i.e., widths without the mixing
factors) are

Γ(M± → `±1 N) =
1

8π
G2
Ff

2
M |VQuQd|2M3

M λ1/2(1, yN , y`1)

× [(1− yN)yN + y`1(1 + 2yN − y`1)] ,

(5.10a)

Γ(N → `±2 M
′∓) =

1

16π
G2
Ff

2
M ′
|Vquqd |2

1

MN

λ1/2

(
1,
y
′

yN
,
y`2
yN

)
×[

(M2
N +M2

`2
)(M2

N −M2
M ′

+M2
`2

)− 4M2
NM

2
`2

]
=

1

16π
G2
Ff

2
M ′
|Vquqd |2M2

MMN λ1/2

(
1,
y
′

yN
,
y`2
yN

)
×

[
yN − y′ − 2y`2 −

y`2
yN

(y′ − y`2)

]
,

(5.10b)

where again the notations (5.6) were used. We notice that the algebraic factorization of the
Q function, Eq. (E.10), reflects the factorization (5.8), as can be seen by inspection of the
expressions (5.10a) and (5.10b).

It can be checked that the result for the LC processes M± → `±1 N → `±1 `
∓
2 M

′± is the same
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5. Oscillation of heavy sterile neutrino.

as the result (5.8)-(5.9)

Γ(M± → `±1 N → `±1 `
∓
2 M

′±) =
1

ΓN
Γ(M± → `±1 N)Γ(N → `∓2 M

′±) (5.11a)

=
|B`1N |2|B`2N |2

ΓN
Γ(M± → `±1 N)Γ(N → `±2 M

′∓) (`1 6= `2),

(5.11b)

where the canonical decay widths (Γ’s) are again those of Eqs. (5.10). We recall that we
consider the scenario with two on-shell neutrinos Nj (j = 1, 2) with almost degenerate masses:
∆MN � MN1 , where ∆MN ≡ MN2 −MN1 > 0. In this case, it turns out that the expression
for the LV decay width becomes more complicated, see Eq. (4.5). With the notation (5.2) for
the mixing coefficients, it can be written in the following form:

Γ(B± → µ±e±π∓) = Γ×
{
|BµN1|2|BeN1|2 +

K̃1

K̃2

|BµN2|2|BeN2|2

+
4K̃1

(K̃1 + K̃2)
|BµN1||BeN1 ||BµN2||BeN2|

×
(
δ(y) cos θ

(LV)
21 ∓ η(y)

y
sin θ

(LV)
21

)}
,

(5.12)

where Γ is given in Eq. (5.5), with MN ≡ MN1 ≈ MN2 , the angle θ21(LV) is a combination of
the phases of the heavy-light mixing coefficients

θ
(LV)
21 = arg(BµN2) + arg(BeN2)− arg(BµN1)− arg(BeN1). (5.13)

The functions δ(y) and η(y)/y appearing in Eq. (5.12) are functions of the parameter y ≡
∆MN/ΓN only, where ΓN is the arithmetic average of the total decay widths of N1 and N2.
The factors (functions) δ(y) and η(y)/y represent the effects of the N1-N2 overlap in the decay
width, in the real and imaginary parts of the N1-N2 interference terms, respectively. Therefore,
δ(y) and η(y)/y go to zero when y � 1, i.e., when no overlap.

Finally, the coefficients K̃j appearing in Eq. (5.12) are the combinations of the mixing

coefficients appearing in the total decay widths presented in Equations (3.13) as K̃Ma
j .

As mentioned earlier, in addition to the above LV decay width, there exist also the LC decay
width Γ(B± → µ±e∓π±), which in the case of scenario of one on-shell neutrino N coincides
with the LV expression (5.5). In the scenario with two on-shell almost degenerate neutrinos

Nj, the expression is slightly different from LV case Eq. (5.12), namely only the angle θ
(LV)
21 ,

Eq. (5.13), is now replaced by the following angle:

θ
(LC)
21 = arg(BµN2)− arg(BeN2)− arg(BµN1) + arg(BeN1). (5.14)

We shall consider, from now on, the case when there is an almost degeneracy of the two heavy
neutrinos (∆MN � MN ≡ MN1) and at the same time the degeneracy ∆MN is significantly
larger than the (extremely small) decay width ΓN :

∆MN � MN and y ≡ ∆MN

ΓN
� 1. (5.15)
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5.1. The decay width expression

In this case, we can see from Figs. 3.10 and 3.11 that the functions δ(y) and η(y)/y become very
small. Therefore, the N1-N2 overlap term in Γ(B± → µ±e±π∓) becomes negligible. As a result,
Eq. (5.12) reduces to the following form, where we make use of the identities (5.8)-(5.10):

Γ(B± → µ±e±π∓) ≈
2∑
j=1

Γ(B± → µ±Nj → µ±e±π∓) (5.16a)

= Γ(B± → µ±N)Γ(N → e±π∓)

×
{

1

ΓN1

|BµN1|2|BeN1|2 +
1

ΓN2

|BµN2|2|BeN2|2
}
.

(5.16b)

The decay width presented hitherto does not contain an important suppression (acceptance)
factor. Namely, the on-shell neutrino Nj travels before decaying. The decay will be detected
if the on-shell neutrino decays during the passage of the neutrino through the detector. If the
length of the detector is L, then the probability PN of decay of N there is

PN(L) = 1− exp

(
− t

τNγN

)
= 1− exp

(
− L

τNγNβN

)
(5.17a)

≈ L/(τNγNβN) if PN � 1. (5.17b)

In the second identity of Eq. (5.17a) we took into account that L = βN t where βN (. 1) is
the velocity of the N neutrino in the lab frame. Further, γN = (1− β2

N)−1/2 is the Lorentz lab
time dilation factor, typically γN > 2. The N lifetime in the rest is τN = 1/ΓN . Therefore,
γNτN is the N lifetime in the lab frame. The formula (5.17b) holds if PN � 1, and we shall
assume this to be the case in the considered cases.

This decay-within-the-detector probability PN has been presented in details in Appendix C.
It is convenient to define the corresponding canonical, independent of mixing, probability A

A(L) = 1m× Γ(MN)

γN
(5.18a)

⇒ PN(L) ≈
(
L

1m

)
× A K̃. (5.18b)

The quantity A is presented, for γN = 2, in Fig. C.2 as a function of MN .
The effective (true) decay widths and branching ratios are those multiplied by PN . However,

since we have two different (but almost mass degenerate) neutrinos Nj, we have for each of
them a different decay probability

PNj(L) ≈
(
L

1m

)
× A K̃j =

L

γN
ΓNj , (5.19)

where K̃j is given in Eq. (3.15), and in the second equality we used the relations (5.18) and
(3.13). The canonical probability A, Eq. (5.18), is common to both neutrinos Nj because they
have practically the same mass and thus the same kinematics (and hence the same Lorentz

factor γN). The coefficients N`N(∼ 100-101) in K̃j are common to both neutrinos Nj (because
they have practically equal mass); but the mixings B`Nj can be, in principle, quite different for
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5. Oscillation of heavy sterile neutrino.

the two neutrinos, and thus the two mixing factors K̃j (j = 1, 2) may differ significantly from
each other.

Combining the probabilities (5.19) with the decay width (5.16b) leads to the effective (true)
decay width, where the dependence on the two decay widths ΓNj cancels out

Γeff(B± → µ±e±π∓;L) ≈
2∑
j=1

Γ(B± → µ±Nj → µ±e±π∓)PNj(L) (5.20a)

≈ L

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

×
[
|BµN1|2|BeN1|2 + |BµN2|2|BeN2|2

]
.

(5.20b)

This implies that the effective differential decay, with respect to the distance L between the
two vertices of the process, is

d

dL
Γeff(B± → µ±e±π∓;L) ≈ 1

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

×
[
|BµN1 |2|BeN1 |2 + |BµN2 |2|BeN2 |2

]
,

(5.21)

which is independent of the distance L.
For the LC processes B± → µ±e∓π±, the result is the same as in the above LV processes,

due to the equality of the LC decay width (5.11) with the LV decay width (5.8)-(5.9) [cf. also
Eqs. (5.10)]. Therefore, when δ(y), η(y)/y � 1 (i.e., when the conditions (5.15) hold), we have

d

dL
Γeff(B± → µ±e∓π±;L) =

d

dL
Γeff(B± → µ±e±π∓;L), (5.22a)

Γeff(B± → µ±e∓π±;L) = Γeff(B± → µ±e±π∓;L). (5.22b)

The present upper bounds for the |B`Nj |2 mixing coefficients appearing in these expressions,
in the considered mass range MN ≈ 1-5 GeV, are |B`Nj |2 ∼ 10−7-10−4, cf. [45].1

5.2 The effects of neutrino oscillation

In the previous Section, important effects of neutrino oscillation of the propagating on-shell
neutrino were not accounted for. As we shall see, these effects lead to a modulation, i.e.,
L-dependence of the effective decay widths obtained in the previous Section, where L is the
distance traveled by the on-shell neutrino between it production and detection point (L = βN t).

We shall follow the lines of the approach of Ref. [67] to neutrino oscillations. For the LV
decays B+ → µ+Nj → µ+e+π− of Fig. 5.1, the relevant interactions at the first (production)

vertex are −B∗µNjµ
cγη(1 + γ5)NjW

(+)
η , and the neutrino state produced at this vertex is

|ψ〉(B+) ∼ B∗µN1
|N1(pN1)〉+B∗µN2

|N2(pN2)〉, (5.23)

1 The present upper bounds for |BτN |2 are higher than that, but are expected to become significantly lower in the future.
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5.2. The effects of neutrino oscillation

where the momenta of the two physical on-shell neutrinos are slightly different from each other,
because ∆MN 6= 0 (we recall: ∆MN �MN). We have

pNj = (ENj , 0, 0, p
3
Nj

), ENj =
√
M2

Nj
+ (p3

Nj
)2, (5.24)

where the restriction to one spatial dimension (ẑ) was made, because the processes with oscil-
lation require the neutrino to propagate far from the production vertex. At the second vertex

of the LV process Fig. 5.1, the relevant coupling is B∗eNjNjγ
δ(1 − γ5)eW

(+)
δ . The detection

of the neutrino there can be described by an operator at the detector space-time location
z = (t, 0, 0, L) where L = βN t. This operator is the annihilation operator B∗eNj b̂(Nj)(pNj ; z) =

B∗eNj b̂(Nj)(pNj) exp(−ipNj ·z) acting at the aforementioned component |Nj(pNj)〉 ∼ b̂(Nj)(pNj)
†|0〉

(j = 1, 2). Since b̂(N)(pN)b̂(N)(pN)†|0〉 = const|0〉, this implies the following detection ampli-
tude:2

A(B+ → µ+e+π−;L) ∼ B∗µN1
B∗eN1

exp(−ipN1 · z) +B∗µN2
B∗eN2

exp(−ipN2 · z). (5.25)

The L dependence of the effective (true) decay width of the considered process is proportional
to the absolute square of the above amplitude

d

dL
Γ

(osc)
eff (B+ → µ+e+π−;L) ≡ 1

dL
Γ

(osc)
eff (BB+ → µ+e+π−;L < L′ < L+ dL)

∼ |A(B+ → µ+e+π−)|2 (5.26a)

∼

{
2∑
j=1

|BµNj |2|BeNj |2 + 2Re
[
B∗µN1

B∗eN1
BµN2BeN2 exp [i(pN2 − pN1) · z]

]}
. (5.26b)

The superscript “(osc)” indicates that this is the (differential) effective decay width with
oscillation effects included. The oscillation term, in comparison with the expression (5.21),
is new and introduces L-dependence in the otherwise L-independent differential decay width
dΓeff/dL of Eq. (5.21). This oscillation term comes from the interference term in the square of
the amplitude (5.25). Therefore, by comparing the obtained expression (5.26) with (5.21), we
can obtain the complete expression for the effective differential decay width with oscillation
effects included

d

dL
Γ

(osc)
eff (B+ → µ+e+π−;L) ≈ 1

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

×

{
2∑
j=1

|BµNj |2|BeNj |2 + 2Re
[
B∗µN1

B∗eN1
BµN2BeN2 exp [i(pN2 − pN1) · z]

]}
.

(5.27)

The oscillation term here contains two on-shell 4-momenta pNj = (ENj , 0, 0, p
3
Nj

) (j = 1, 2)

which are related by the on-shellness conditions pNj · pNj = M2
Nj

and by the condition

βN2 − βN1 ≡
p3
N2

EN2

−
p3
N1

EN1

≈ 0. (5.28)

2We use the metric (1,−1,−1,−1) for the scalar products. It is our understanding that the authors of Ref. [67] use the metric
(−1, 1, 1, 1).
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5. Oscillation of heavy sterile neutrino.

This condition comes from the following interpretation. The N1 and N2 amplitudes interfere
at L if both of them are there appreciable. The neutrinos N1 and N2 in general separate as
they travel from their production to their detection vertex. Interference is then possible there
only if this separation |∆L12| ≡ |(βN2 − βN1)|t (with: t = L/βN) is smaller than the spread of
the wavepacket ∆Lwp ≡ βN∆T , cf. Ref. [67]

|βN2 − βN1|
|βN2 + βN1|

� ∆T

t
(� 1). (5.29)

Stated otherwise, the following hierarchy is assumed:

v2

wpL∆

∆L12

L1v

2
Nβ

βN
1

Figure 5.3: Graphical representation of the hierarchy Eq. (5.30) of the lengths ∆L12, ∆Lwp and the detector
length L. The two interaction vertices (the production and the decay vertex of the neutrino N)
are denoted as v1 and v2, respectively. Note that at the production vertex (v1) the wavepackets
of N1 and N2 are not mutually displaced, unlike in the decay vertex (v2).

|∆L12|
(
≡ |βN2 − βN1|L

βN

)
� ∆Lwp (≡ βN∆T ) � L, (5.30)

cf. also Fig. 5.3.
In order to express the oscillation phase φ(L) ≡ (pN2 − pN1) · z in Eq. (5.27) [⇔ (5.29)] in a

convenient form, the condition (5.28) can be used. Since βN2 ≡ p3
N2
/EN2 and βN1 ≡ p3

N1
/EN1

are close in value, hence they are close to the value of βN ≡ (p3
N2

+p3
N1

)/(EN2 +EN1). It can be
checked that the latter velocity is practically equal to the arithemtic average (1/2)(βN2 +βN1).
Therefore,

z = (t, 0, 0, L) ≈ t(1, 0, 0, βN) =
t

(EN2 + EN1)
(pN2 + pN1) (5.31)

Therefore, the oscillation phase is [67]

φ(L) ≡ (pN2 − pN1) · z = t
(M2

N2
−M2

N1
)

(EN1 + EN2)
≈ tMN

∆MN

EN

≈ L

βN
MN

∆MN

EN
= L

∆MN

βNγN
, (5.32)

where it was taken into account that p2
Nj

= M2
Nj

, and M2
N1
−M2

N2
= 2MN∆MN (where: 0 <

∆MN ≡MN2−MN1 �MN1 ≡MN). As stressed in Ref. [67], this expression for the oscillation
angle is valid always, not just for relativistic neutrinos Nj, whenever the relation (5.29) is
fulfilled. For example, if the neutrinos are nonrelativistic, we have φ(L) ≈ (L/βN)∆MN . The
obtained oscillation phase allows us to define the oscillation length Losc as

φ(Losc) = 2π ⇒ Losc =
2πβNγN
∆MN

. (5.33)
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5.2. The effects of neutrino oscillation

Using the expression (5.32), the differential decay width (5.27) can now be written in a more
explicit form

d

dL
Γ

(osc)
eff (B+ → µ+e+π−;L) ≈ 1

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

×

{
2∑
j=1

|BµNj |2|BeNj |2 + 2|BµN1||BeN1||BµN2 ||BeN2| cos

(
L

∆MN

βNγN
+ θ

(LV)
21

)}
(5.34)

where the constant phase θ
(LV)
21 is defined in Eq. (5.13). We can integrate the differential decay

width (5.34) over dL length to the full length L between the vertices. If L � Losc, this then
gives then gives the full effective decay width of Eq. (5.20b), because the oscillation term ∼
cos(φ(L)+θ12) gives a relatively negligible contribution when integrated over several “oscillation
wavelengths” Losc. If, on the other hand, we do not assume L � Losc, the integration of the
expression (5.34) gives

Γ
(osc)
eff (B+ → µ+e+π−;L) ≈ L

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

{ 2∑
j=1

|BµNj |2|B2
eNj
|+

Losc

πL
|BµN1||BeN1||BµN2 ||BeN2|

[
sin

(
2π

L

Losc

+ θ
(LV)
21

)
− sin(θ

(LV)
21 )

]}
. (5.35)

Until now we considered the case of oscillation effects in LV decays B+ → µ+e+π−. It can
be checked that for the charge-conjugate LV decays B− → µ−e−π+ the previous derivation can
be repeated, with the only replacements B∗`Nj 7→ B`Nj and B`Nj 7→ B∗`Nj . Instead of Eq. (5.25)
we now have

A(B− → µ−e−π+;L) ∼ BµN1BeN1 exp(−ipN1 · z) +BµN2BeN2 exp(−ipN2 · z). (5.36)

This implies that in the result (5.34) we now get θ21 7→ −θ21, so that we can extend the results
(5.34) and (5.35) to both LV cases (B±)

d

dL
Γ

(osc)
eff (B± → µ±e±π∓;L) ≈ 1

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

×

{
2∑
j=1

|BµNj |2|B2
eNj
|+ 2|BµN1||BeN1 ||BµN2||BeN2| cos

(
2π

L

Losc

± θ(LV)
21

)}
, (5.37)

Γ
(osc)
eff (B± → µ±e±π∓;L) ≈ L

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

{ 2∑
j=1

|BµNj |2|B2
eNj
|+

Losc

πL
|BµN1||BeN1||BµN2 ||BeN2|

[
sin

(
2π

L

Losc

± θ(LV)
21

)
∓ sin(θ

(LV)
21 )

]}
.

(5.38)

For the LC processes B± → µ±e∓π±, cf. Fig. 5.2, in the case of no oscillation effects the
results for the decay widths are the same as for the LV processes, cf. Eqs. (5.20)-(5.22). When
oscillations are accounted for, the results are almost the same as in the just considered LV

65



5. Oscillation of heavy sterile neutrino.

processes, except that for the decay amplitudes [cf. Eqs. (5.25) and (5.36) for LV case] we have
some of the heavy-light mixing elements B`Nj complex-conjugated and others not

A(B+ → µ+e−π+;L) ∼ B∗µN1
BeN1 exp(−ipN1 · z) +B∗µN2

BeN2 exp(−ipN2 · z), (5.39a)

A(B− → µ−e+π−;L) ∼ BµN1B
∗
eN1

exp(−ipN1 · z) +BµN2B
∗
eN2

exp(−ipN2 · z). (5.39b)

This then leads to the following results, in analogy with the LC results (5.37)-(5.38) where now

only the phase angle θ
(LV)
21 gets replaced by a different phase angle θ

(LC)
21 given in Eq. (5.14):

d

dL
Γ

(osc)
eff (B± → µ±e∓π±;L) ≈ 1

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

×

{
2∑
j=1

|BµNj |2|B2
eNj
|+ 2|BµN1||BeN1 ||BµN2||BeN2| cos

(
2π

L

Losc

± θ(LC)
21

)}
, (5.40)

Γ
(osc)
eff (B± → µ±e±π∓;L) ≈ L

γNβN
Γ(B± → µ±N)Γ(N → e±π∓)

{ 2∑
j=1

|BµNj |2|B2
eNj
|+

Losc

πL
|BµN1||BeN1||BµN2 ||BeN2|

[
sin

(
2π

L

Losc

± θ(LC)
21

)
∓ sin(θ

(LC)
21 )

]}
.

(5.41)

All the formulas with oscillation effects, derived in this Section, can be extended in a
straightforward way to the oscillation effects in the semihadronic decays with two equal flavors
of produced charged leptons, i.e., M± → `±`±M

′∓ and M± → `±`∓M
′±; and more specifically,

B± → µ±µ±π∓ and B± → µ±µ∓π±.
In Appendix F we show that the wavefunction approach of Ref. [39] (cf. also [68]) to the con-

sidered LV and LC processes with on-shell neutrinos is consistent, within their approximations,
with the amplitude approach presented here and based on the method of Ref. [67].

5.3 Oscillation length and measurement of the modulation

For the described oscillation modulation to be well defined and detectable, several conditions
have to be fulfilled. Among them is the hierarchy (5.30) between the length L between the
production and the decay vertex, the width Lwp of the wavepacket, and the separation ∆L12

between the two wavepackets at the second vertex (cf. Fig. 5.3 and Ref. [67]). Yet another
necessary condition for the detection of the oscillation is that the maximal detected length
L between the two vertices (we shall call it simply the total detector length, Lmax ≡ Ldet) is
larger than or comparable with the oscillation length Losc [Eq. (5.33)]. For the measurement
of the oscillation modulation effects in practice, the more convenient case is Losc ∼ Ldet than
Losc < Ldet, i.e.,

Losc

(
≡ 2πβNγN

∆MN

)
∼ Lmax (≡ Ldet). (5.42)

Further, if the decay probability PNj(Ldet) for the decay of Nj (j = 1, 2) within the detector,
Eqs. (C.2)-(5.19), is significant, i.e., if PNj(Ldet) ∼ 1, then the oscillation is not well-defined
because it disappears within one of less oscillation cycle due the the decay of Nj. Therefore,
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5.3. Oscillation length and measurement of the modulation

for the oscillation to be well-defined, we have to require PNj(Ldet)� 1. This means, according
to Eq. (5.17b) and using Eq. (5.42), the following:

(Losc ≡)
2πβNγN
∆MN

∼ Ldet �
βNγN
ΓNj

. (5.43)

This implies that we have 1/∆MN � 1/ΓNj (j = 1, 2), meaning that the condition y(≡
∆MN/ΓN)� 1 of Eq. (5.15) is fulfilled when we have well-defined and detectable oscillation.3

We recall that this condition (y � 1) was assumed throughout the derivation of the oscillation
formulas of the previous Section so that the (otherwise problematic) overlap terms with δ(y)
and η(y)/y factors in the expression (5.12) could be neglected.

The oscillation length can be estimated in the following way. Let us assume that the near
mass-degeneracy (y � 1) is in the interval: 1� y(≡ ∆MN/ΓN) . 102, i.e.,

∆MN . 102ΓN . (5.44)

Further, let us take that in the total decay widths ΓNj , Eqs. (3.13)-(3.15), the dominating

contribution in the mixing factors K̃j is from `-component, i.e., K̃j ≈ N`N |B`Nj |2 (j = 1, 2;
` = e or µ or τ). Stated otherwise, we assume that |B`Nj |2 is the largest among the mixings
|BeNj |2, |BµNj |2 and |BτNj |2. Then we have

ΓNj =

(
N`N
10

)
×
( |B`Nj |2

10−5

)
× 4.57× 10−18 GeV

=

(
N`N
10

)
×
( |B`Nj |2

10−5

)
× 1

43.5 m
. (5.45)

For MN = 1-5 GeV, and taking N to be Majorana neutrino, we have NeN ≈ NµN ≈ 6-10, and
NτN ≈ 3-5, hence the factor N`N/10 in Eq. (5.45) is ∼ 1. The factor |B`Nj |2/10−5 in Eq. (5.45)
can be ∼ 1, or larger or smaller, cf. Table 5.1 for some present upper bounds.

Table 5.1: Presently known upper bounds for the squares |B`N |2 of the heavy-light mixing matrix elements,
for various specific values of MN . We excluded the upper bounds for |BeN |2 from 0νββ decay,
which are uncertain due to possible cancellation effects. See also Figs. 3-5 of Ref. [69]. For each
upper bound value, the corresponding experiment (reference) is indicated.

MN [GeV ] |BeN |2 |BµN |2 |BτN |2
1.0 3× 10−7 ( [70]) 1× 10−7 ( [55]) 3× 10−3 ( [56])
2.1 4× 10−5 ( [56]) 3× 10−5 ( [71]) 2× 10−4 ( [56])
3.0 2× 10−5( [56]) 2× 10−5( [56]) 4× 10−5( [56])

4.0-5.0 1× 10−5 ( [56]) 1× 10−5 ( [56]) 1× 10−5 ( [56]

The oscillation length (5.33) can then be estimated

Losc =
2π|~pN |
MN∆MN

&
|~pN |
MN

2π

102ΓN
∼ |~pN |
MN

1

10ΓN
(5.46a)

∼ |~pN |
MN

1

10
×
(

10

N`N

)
× 2× 10−5

(|B`N1|2 + |B`N2|2)
× 5× 101 m ∼ |~pN |

MN

10−4

|B`Nj |2
m ∼ 10−4

|B`Nj |2
m.

(5.46b)

3ΓN ≡ (1/2)(ΓN1
+ ΓN2

) according to the definition (3.37).
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In the estimate (5.46a) we assumed the inequality (5.44), and in the estimate (5.46b) we took
into account the relation (5.45), as well as the identity (3.37) for ΓN ; and at the end we
assumed that the produced on-shell neutrinos Nj are semirelativistic, i.e., |~pN | ∼ MN (∼ 1
GeV). Using the estimate (5.46b), and recalling that |B`Nj |2 is the largest among the mixings
|BeNj |2, |BµNj |2 and |BτNj |2, we can see from Table 5.1 that for MN = 1-5 GeV we can take
|B`Nj |2 = |BτNj |2, whose upper bounds are given in the right column of Table 5.1. This implies
that, at present, we can expect the values Losc ∼ 0.1-10 m for the oscillation length. Of course,
implicitly we assumed that the energies of the (B or Bc) mesons, which decay, are not very
high so that the assumption |~pN | ∼ MN would be justified. If Losc > 10 m, we would need
quite a large detector, cf. Eqs. (5.42) and (5.43).

If we have Losc ∼ 0.1-1 m (∼ Ldet), our formulas (5.37)-(5.38) for LV decays and (5.40)-
(5.41) for LC decays indicate that such oscillations can be detected and measured, once a
sufficient number of such decays is detected, with the first (production) and the second (decay)
vertices being within the detector. In this way, the oscillation length Losc ∝ 1/∆MN could be
determined, and thus the mass difference ∆MN (�MN).

It is also interesting that these formulas indicate that in such a case the phases θ
(LV)
21 and

θ
(LC)
21 could be measured as well. These phases could be determined, for example, by comparing

the modulation of the measured differential effective decay widths dΓ
(osc)
eff (B±;L)/dL for the B+

and B− decays into µeπ, because the phase difference between the two oscillatory modulations
is 2 × θ21, cf. Eq. (5.37) for LV and Eq. (5.40) for LC case. The factor sin θ21 appears in the
CP asymmetry factor ACP ∝ sin θ21 for these processes. For example, this asymmetry for the
LV case is

A(LV)
CP (B) ≡ Γ(B− → µ−e−π+)− Γ(B+ → µ+e+π−)

Γ(B− → µ−e−π+) + Γ(B+ → µ+e+π−)
(5.47a)

∝ P sin θ
(LV)
21

y

y2 + 1
, (5.47b)

where y ≡ ∆MN/ΓN [cf. the notation (3.37)], and factor P ∼ 1 depends principally on the

ratios of mixings |B`N2 |/|B`N1| (` = µ, e) and ratio K̃1/K̃2 [cf. the notation (3.15)]. This factor
ACP can be substantial if y ≡ ∆MN/ΓN is not too small, e.g. if y ∼ 10. We refer to Section 4
for more details on this. An interesting aspect here is that, by the described measurement of
the angle θ21 we could conclude that the CP asymmetry ACP is nonzero even in the case when
y � 1, i.e., when this asymmetry is practically unmeasurable.

The differential decay width dΓ
(osc)
eff (B → µeπ;L)/dL of Eqs. (5.37) and (5.40) is presented

schematically in Fig. 5.4, where L is the distance between the two vertices, and Lmax = Ldet. In
order to interpret how to measure this differential decay width, we recall that this quantity is

the limit (1/∆L)×Γ
(osc)
eff (B → µeπ;L < L

′
< L+∆L) when ∆L→ 0 (i.e., ∆L� Losc), and here

L
′

is the distance between the production (µ-Nj) and the decay (Nj-e-π) vertex. To measure
such a quantity, a sufficiently high number of events for each chosen bin L < L′ < L + ∆L
would have to be measured (with ∆L� Losc and L ≤ Ldet).

There may exist another complication in such measurements. Namely the length Losc can
vary in the detected events of the considered decays because Losc ∝ βNγN ∝ |~pN | ≡ |~pe + ~pπ|.
In principle, the 3-momentum ~pN ≡ ~pe + ~pπ can be measured in each such decay, i.e., Losc can
be determined in each such event. The graphical representation Fig. 5.4 refers to a class of
events which, among themselves, have approximately equal value of Losc, i.e., approximately
equal |~pN |. If the decaying B± (or B±c ) mesons were at rest in the lab frame, then the value of
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dΓeff

(osc)
/dL

0
L

L

L

max

osc

Figure 5.4: Graphical schematical representation of the differential decay rate dΓ
(osc)
eff (B → µeπ;L)/dL,

cf. Eqs. (5.37) and (5.40).

|~pN | is such a frame would be fixed by kinematics, namely

|~p(0)
N | =

1

2
MB λ

1/2

(
1,
M2

N

M2
B

,
M2

µ

M2
B

)
, (5.48)

where the notation (5.6b) is used.
In reality the B mesons coming into the detector have energies EB > MB. Let us assume

that the incoming B mesons in the lab frame have all approximately the same 3-momentum
~pB = |~pB|ẑ parallel to the direction ẑ of the tube of the detector where both vertices are
detected, and that the detector tube is relatively narrow. Then the vector ~pN in the detected

events is the 3-momentum which can be obtained from ~p
(0)
N = |~p(0)

N |ẑ [cf. Eq. (5.48)] by a
constant boost in the direction −ẑ, bringing us from the B rest frame into the lab frame
where B’s have the (approximately) constant 3-momentum |~pB|ẑ. Thus the lab 3-momentum
~pN = |~pN |ẑ is approximately constant also in such a case. In such a case Losc would be
approximately the same for all the detected events B → µN → µeπ in the tube, and the
oscillation modulation as indicated in Fig. 5.4 could be measured, including the phase θ21

relevant for CP violation.
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Chapter 6

Conclusions

CP violation in the (sterile) neutrino sector may have important implications for the thermal
generation of dark matter and baryon asymmetry of the universe [72]. We investigated the
possibility of detection of CP violation in two different types of the decays, the leptonic (π± →
e±Nj → e±e±µ∓ν) and the semihadronic decays (M± → `±1 Nj → `±1 `

±
2 M

′∓), where M and
M
′

are pseudoscalar mesons, M = K,D,Ds, B,Bc and M
′

= π,K,D,Ds, and the charged
leptons are `1, `2 = e, µ. We assumed that such decays occur by means of exchange of on-shell
intermediate neutrinos at the tree level, but are suppressed by the heavy-light neutrino mixing
elements of the PMNS matrix.

In the leptonic decay scenario (π± → e±e±µ∓ν), the decays can be lepton-number-conserving
(LC), or lepton-number-violating (LV). If the Nj neutrinos are of Dirac nature, only LC decays
take place; if they are of Majorana nature, both LC and LV decays take place. In Ref. [27]
such decays were studied with a view to ascertain the nature of the intermediate neutrino Nj,
and it was shown there that it may be possible to do this in the future pion factories where
the number of produced charged pions will be exceedingly high. On the other hand, the semi-
hadronic decays (M± → `±1 `

±
2 M

′∓), are lepton-number-violation (LV) processes [25], and in
such processes the neutrino must be Majorana type.

In this thesis, I investigated the possibility to establish the CP violation in both aforemen-
tioned types of decays. Such a CP violation originates from the interference between the N1

and N2 exchange processes and the existence of possible CP-violating phases in the PMNS mix-
ing matrix. We showed that such signals of CP violation could be detected in the future pion
factories (leptonic scenario) and in the future SHiP experiment (semihadronic scenario) if we
have, at least, two sterile neutrinos in the mentioned mass intervals and such that their masses
are almost degenerate. A similar phenomenon of (resonant) CP violation was investigated
earlier [73], in neutrino decays and neutrino-mediated scattering, but with a more complicated
formalism involving loops-effects. Our formalism is simpler, involving tree-level formulation
and neutrino propagators with finite decay widths ΓNj.

In CP asymmetries detection, the crucial point is the expression for the imaginary part of
the product of the propagators of two Majorana neutrinos Eqs. (3.35), when the difference
of masses ∆MN ≡ MN2 − MN1 (> 0) of the two sterile neutrinos becomes small enough,
comparable to the total decay widths of these neutrinos, 0.33 ΓN ≤ ∆MN ≤ 5 ΓN . In such a
case, the mentioned imaginary part becomes large and leads to a large CP-violating decay width
difference S−(M) ≡ S(M−)−S(M+). We show that in such a case, and provided that a specific
CP-violating difference θ21 of the phases of heavy-light neutrino mixings is not very small
(|θ21| 6� 1), the decay width difference S−(M) becomes comparable with the sum of the decay
widths S+(M) ≡ S(M−)+S(M+) and the corresponding CP ratio ACP(M) ≡ S−(M)/S+(M)
thus becomes ACP(M) ∼ 1. It is interesting that the requirement of the near degeneracy of
the two sterile neutrinos (with MNj ∼ 1 GeV), at which we arrive by requiring appreciable CP
violation, fits well into the well-motivated νMSM model [29–34], where the near degeneracy
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of the two sterile neutrinos with mass MNj ∼ 1 GeV is obtained by requiring that the third
(the lightest) sterile neutrino be the dark matter candidate. The results of our calculation can
thus be interpreted in the framework of the νMSM model or more general low-scale seesaw
models [74], namely that if the model is experimentally confirmed then it is possible that
significant neutrino sector CP violation effects will be detected as well.

Moreover we considered the phenomenon of neutrino oscillations in semileptonic decays of B
mesons via on-shell heavy nearly mass-degenerate Majorana neutrinos Nj (j = 1, 2): the lepton
number violating (LV) decays B± → µ±Nj → µ±e±π∓, and the lepton number conserving (LC)
decays B± → µ±Nj → µ±e∓π±. Since the neutrinos contributing to such decays have to be
on-shell (the off-shell neutrinos give completely negligible contributions), the relevant flavor
analogs are not νµ and νe Eqs. (5.1), but the truncated combinations N1 and N2 Eqs. (5.2)-
(5.3), which are combinations of only the heavy mass neutrinos N1 and N2. The central results
of the work are Eqs. (5.37) and (5.40) for the LV and LC differential effective decay rates

dΓ
(osc)
eff (L)/dL. These quantities must be interpreted as (1/∆L) × Γ

(osc)
eff (L < L′ < L + ∆L),

where L′ is the measured distance between the production vertex (µ-N) and the decay vertex
(N -e-π), and ∆L is considerably smaller than the oscillation length Losc ≡ 2π|~pN |/(MN∆MN).
Here, ~pN is the (approximately constant) 3-momentum of the intermediate Nj’s, and mass
quantities are 0 < ∆MN ≡ MN2 − MN1 � MN1 ≡ MN . We argued that it is possible to
have Losc ∼ 0.1-10 m if the 3-momenta ~pB and thus ~pN are not too large. If the detector
length is comparable with Losc, and a sufficient number of mentioned decays is detected, we
argued that it will be conceivable to measure the L-dependence of the differential decay width

dΓ
(osc)
eff (L)/dL, i.e., the oscillation modulation effects. By measuring these effects, the value of

Losc could be discerned and thus the value of the mass difference ∆MN (�MN). Moreover, by
measuring such effects it would be possible to discern the phase θ21, cf. Eqs. (5.13) and (5.14),
which plays an important role in the CP violation.
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Appendix A

Explicit Formulas of π+→ e+e+µ−νe

A.1 Square Matrix Elements

Here we write down the explicit formulas for the direct (DD∗), crossed (CC∗) and direct-
crossed interference (DC∗, CD∗) elements [T (X)(DD∗), T (X)(CC∗), T (X)(DC∗), T (X)(CD∗)]
appearing in Eqs. (3.4). For the lepton number violating (LV) processes in Figs. 3.1 and 3.2,
these are:

T (LV )(DD∗) = 256(p2 · pν)
[
−M2

π(p1 · pµ) + 2(p1 · pπ)(pµ · pπ)
]
, (A.1a)

T (LV )(CC∗) = 256(p1 · pν)
[
−M2

π(p2 · pµ) + 2(p2 · pπ)(pµ · pπ)
]
, (A.1b)

T
(LV )
± (DC∗) = 128

{
(p1 · pν)

[
M2

π(p2 · pµ)− 2(p2 · pπ)(pµ · pπ)
]

+(p2 · pν)
[
M2

π(p1 · pµ)− 2(p1 · pπ)(pµ · pπ)
]

−(p1 · p2)
[
M2

π(pν · pµ)− 2(pν · pπ)(pµ · pπ)
]}

∓i
{
− (p1 · pπ)ε(p2, pν , pµ, pπ) + (p2 · pπ)ε(p1, pν , pµ, pπ)

−(pν · pπ)ε(p1, p2, pµ, pπ) + (pµ · pπ)ε(p1, p2, pν , pπ)

}
,

T
(LV )
± (CD∗) =

(
T

(LV )
± (DC∗)

)∗
, (A.1c)

where we denoted

ε(q1, q2, q3, q4) ≡ εη1η2η3η4(q1)η1(q2)η2(q3)η3(q4)η4 , (A.2)

and εη1η2η3η4 is the totally antisymmetric Levi-Civita tensor with the sign convention ε0123 = +1.

For the lepton number conserving (LC) process in Figs. 3.3 and 3.4, the corresponding
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expressions are:

T (LC)(DD∗) = 256(pµ · pν)
[
(p1 · p2)

(
M4

π −M2
πM

2
e − 4M2

π(p1 · pπ) + 4(p1 · pπ)2
)

+2M2
e (p2 · pπ)(M2

π − p1 · pπ)

]
, (A.3a)

T (LC)(CC∗) = 256(pµ · pν)
[
(p1 · p2)

(
M4

π −M2
πM

2
e − 4M2

π(p2 · pπ) + 4(p2 · pπ)2
)

+2M2
e (p1 · pπ)(M2

π − p2 · pπ)

]
, (A.3b)

T (LC)(DC∗) = 256(pµ · pν)
[
(p1 · p2)(M2

π − 2p1 · pπ)(M2
π − 2p2 · pπ)

+M2
e

(
−2(p2 · pπ)2 +M2

π(p2 · pπ) +M2
πM

2
e

)
+M2

e (p1 · pπ)(M2
π − 2p1 · pπ)

]
,

T (LC)(CD∗) =
(
T (LC)(DC∗)

)∗
. (A.3c)

A.2 Explicit formula for Γ(X) when Me 6= 0

The formula (3.21) is obtained by performing the integration of the differential decay width
dΓ(LV )/dEµ over the muon energy Eµ, in the rest frame of the Nj neutrino. The expression for
dΓ(LV )/dEµ is written explicitly, e.g., in Appendix A of Ref. [27]. This gives

Γ(LV )(DD∗)jj = K2
π

1

2!

1

2Mπ(2π)8

∫
d4 |P (LV )

j (D)|2 T (LV )(DD∗) (A.4a)

= K2
π

1

2!

1

2Mπ(2π)8

∫
d4

π

MNjΓNj
δ
(

(pπ−p1)2 −M2
Nj

)
M2

Nj
T (LV )(DD∗) = · · · (A.4b)

= K2
π

1

(2π)4

MNj

ΓNjM
3
π

λ1/2(M2
π ,M

2
Nj
,M2

e )× 1

2MNj

[
M2

π(M2
Nj

+M2
e )− (M2

Nj
−M2

e )2
]

×
∫ (M2

Nj
+M2

µ−M2
e )/(2Me)

Mµ

dEµEµ

√
E2
µ −M2

µ

(M2
Nj
− 2MNjEµ +M2

µ −M2
e )2

(M2
Nj
− 2MNjEµ +M2

µ)
. (A.4c)

The ellipses in Eq. (A.4b) indicate the analytic integrations over the four-particle final phase
space of the process of Fig. 3.1 with the exception of Eµ (in the rest frame of Nj), performed
in Ref. [27]. Eq. (A.4c) then uses the differential decay width dΓ(LV )(DD∗)/dEµ obtained
in Ref. [27].1 The integration in Eq. (A.4c) can be performed explicitly (in Ref. [27] it was
performed only in the limit Me = 0), and the result is Eq. (3.21) with notations (3.22) and the

1 Eq. (A.7) of that reference, with the corresponding replacements: mM 7→Mπ , mN 7→MNj
, m` 7→Mµ, m1 = m2 7→Me.

74



A.2. Explicit formula for Γ(X) when Me 6= 0

function F(xj, xej) given explicitly here

F(xj, xej) =

{
λ1/2(1, xj, xej)

[
(1 + xj)(1− 8xj + x2

j)− xej(7− 12xj + 7x2
j)

−7x2
ej(1 + xj) + x3

ej

]
− 24(1− x2

ej)x
2
j ln 2

+12

[
− x2

j(1− x2
ej) lnxj + (2x2

j − x2
ej(1 + x2

j)) ln(1 + xj + λ1/2(1, xj, xej)− xej)

+x2
ej(1− x2

j) ln

(
(1− xj)2 + (1− xj)λ1/2(1, xj, xej)− xej(1 + xj)

xej

)]}
, (A.5)

It turns out that the integration over the differential decay width of the lepton number con-
serving case, dΓ(LC)/dEµ,

Γ(LC)(DD∗)jj = K2
π

1

(2π)4

MNj

ΓNjM
3
π

λ1/2(M2
π ,M

2
Nj
,M2

e )× 1

96M2
Nj

×
∫ (M2

Nj
+M2

µ−M2
e )/(2Me)

Mµ

dEµ
1[

M2
µ +MNj(−2Eµ +MNj)

]3
×
{

8
√

(E2
µ −M2

µ)MNj

[
(2Eµ −MNj)MNj −M2

µ +M2
e

]2
×
[
M2

πM
2
Nj
−M4

Nj
+M2

e (M2
π + 2M2

Nj
)−M4

e

]
×
[
8E3

µM
2
Nj
− 2M2

µMNj(M
2
µ +M2

Nj
+ 2M2

e )− 2E2
µMNj

(
5(M2

µ +M2
Nj

) +M2
e

)
+Eµ

(
3M4

µ + 10M2
µM

2
Nj

+ 3M4
Nj

+ 3M2
e (M2

µ +M2
Nj

)
) ]}

(A.6)

gives the same result as the X = LV case, i.e., Eqs. (3.21) with (A.5). In Eq. (A.6) we inserted
the differential decay width dΓ(LC)(DD∗)jj/dEµ as obtained in Eq. (A.14) of Ref. [27].
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Appendix B

Partial decay widths of
heavy neutrino N

The formulas for the leptonic decay and semimesonic decay widths of a sterile neutrino N have
been obtained in Ref. [45] (Appendix C there), for the masses MN ∼ 1 GeV. Nonetheless,
for the higher values of the masses MN , the calculation of the semihadronic decay widths
becomes increasingly complicated because not all the resonances are known. Therefore, in
Refs. [26, 75] an inclusive approach was proposed for the calculation of the total contribution
to the semihadronic decay width of N , by replacing the various (pseudoscalar and vector)
meson channels by quark-antiquark channels. This inclusive approach, based on duality, was
applied for high masses MN ≥ Mη′ ≈ 0.958 GeV. Here we summarize the formulas given in
Ref. [26] for the decay width channels (see also: [45]). The leptonic channels are:

2Γ(N → `−`
′+ν`′ ) = |B`N |2

G2
F

96π3
M5

NI1(y`, 0, y`′ )(1− δ``′ ) , (B.1a)

Γ(N → ν``
′−`

′+) = |B`N |2
G2
F

96π3
M5

N

[
(g

(lept)
L g

(lept)
R + δ``′g

(lept)
R )I2(0, y`′ , y`′ )

+
(

(g
(lept)
L )2 + (g

(lept)
R )2 + δ``′ (1 + 2g

(lept)
L )

)
I1(0, y`′ , y`′ )

]
(B.1b)

∑
ν`

∑
ν′

Γ(N → ν`ν
′
ν̄
′
) =

∑
`

|B`N |2
G2
F

96π3
M5

N . (B.1c)

In Eq. (B.1a) factor 2 is to be included only in the Majorana case, because in such case
both decays N → `−`

′+ν`′ and N → `+`
′−ν`′ contribute (` 6= `

′
). In the Dirac case, only one

half of the expression (B.1a) contributes.

If MN < Mη′ ≈ 0.968 GeV, the following semimesonic decays contribute, involving
pseudoscalar (P ) and vector (V ) mesons:
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2Γ(N → `−P+) = |B`N |2
G2
F

8π
M3

Nf
2
P |VP |2FP (y`, yP ) , (B.2a)

Γ(N → ν`P
0) = |B`N |2

G2
F

64π
M3

Nf
2
P (1− y2

P )2 , (B.2b)

2Γ(N → `−V +) = |B`N |2
G2
F

8π
M3

Nf
2
V |VV |2FV (y`, yV ) , (B.2c)

Γ(N → ν`V
0) = |B`N |2

G2
F

2π
M3

Nf
2
V κ

2
V (1− y2

V )2(1 + 2y2
V ) , (B.2d)

where factor 2 in the charged meson channels is again to be taken only in the Majorana case,
because both decays N → `−M

′+ and N → `+M
′− contribute (M

′
= P, V ). The factors

VP and VV are the corresponding CKM matrix elements involving the valence quarks of the
mesons; and fP and fV are the corresponding decay constants. The pseudoscalar mesons
which may contribute are: P± = π±, K±; P 0 = π0, K0, K̄0, η. The vector mesons which may
contribute are: V ± = ρ±, K∗±; V 0 = ρ0, ω,K∗0, K̄∗0.1 When MN ≥ Mη′ (= 0.9578 GeV),
the above semimesonic decay modes are replaced [26], in the spirit of duality, by the following
quark-antiquark decay modes:

2Γ(N → `−UD̄) = |B`N |2
G2
F

32π3
M5

N |VUD|2I1(y`, yU , yD) , (B.3a)

Γ(N → ν`qq̄) = |B`N |2
G2
F

32π3
M5

N

[
g

(q)
L g

(q)
R I2(0, yq, yq) +

(
(g

(q)
L )2 + (g

(q)
R )2

)
I1(0, yq, yq)

]
.

(B.3b)

In Eq. (B.3) we have to take the factor 2 only for the Majorana case. In the formulas (B.1)-
(B.3) we denoted yx ≡ MX/MN (X = `, ν`, P, V, q), and in Eqs. (B.3) we denoted: U = u, c;
D = d, s, b; q = u, d, c, s, b. The values of quark masses which we used were: Mu = Md = 3.5
MeV; Ms = 105 MeV; Mc = 1.27 GeV; Mb = 4.2 GeV. The SM neutral current couplings in
Eqs. (B.1b) and (B.3b) are

g
(lept)
L = −1

2
+ sin2 θW , g

(lept)
R = sin2 θW , (B.4a)

g
(U)
L =

1

2
− 2

3
sin2 θW , g

(U)
R = −2

3
sin2 θW , (B.4b)

g
(D)
L = −1

2
+

1

3
sin2 θW , g

(U)
R =

1

3
sin2 θW . (B.4c)

1 For the values of the decay constants fP and fV , see, e.g., Table 1 in Ref. [26].
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The neutral current couplings κV of the neutral vector mesons are:

κV =
1

3
sin2 θW (V = ρ0, ω) , (B.5a)

κV = −1

4
+

1

3
sin2 θW (V = K∗0, K̄∗0) . (B.5b)

The kinematical expressions I1, I2, FP and FV are:

I1(x, y, z) = 12

∫ (1−z)2

(x+y)2

ds

s
(s− x2 − y2)(1 + z2 − s)λ1/2(s, x2, y2)λ1/2(1, s, z2) , (B.6a)

I2(x, y, z) = 24yz

∫ (1−x)2

(y+z)2

ds

s
(1 + x2 − s)λ1/2(s, y2, z2)λ1/2(1, s, x2) , (B.6b)

FP (x, y) = λ1/2(1, x2, y2)
[
(1 + x2)(1 + x2 − y2)− 4x2

]
, (B.6c)

FV (x, y) = λ1/2(1, x2, y2)
[
(1− x2)2 + (1 + x2)y2 − 2y4

]
, (B.6d)

where λ function is written in Eq. (3.22a). Using these formulas, the total decay width Γ(Nj →
all) can be calculated, and coefficients N`Nj of Eq. (3.15) at the mixing terms |B`Nj |2 can be
evaluated and are presented in Figs. B.1 and B.2. The small kink in the curves of Figs. B.1 and
B.2 at MN = Mη′ (= 0.9578 GeV) appears due to the replacement there (i.e., for MN ≥Mη′ )
of the semihadronic decay channel contributions by the quark-antiquark channel contributions;
we see that the duality works quite well there, with the exception of the case ` = τ because of
the large τ lepton mass.

79



B. Neutrino Partial Decay
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Figure B.1: The effective mixing coefficients N`N (` = e, µ, τ) appearing in Eqs. (3.13)-(3.15), as a function
of the mass MN of the Dirac neutrino.
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Figure B.2: The effective mixing coefficients N`N (` = e, µ, τ) appearing in Eqs. (3.13)-(3.15), as a function
of the mass MN of the Majorana neutrino N .
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Appendix C

The acceptance factor

In experiments which try to detect and investigate the LV decay modes of the mesons M±, the
(expected) number NM ∼ 10N of produced mesons M± (per year, for example) is known. The
value of the corresponding branching ratios of the LV decay modes: Br(M± → `±1 `

±
2 M

′∓) ≡
Γ(M± → `±1 `

±
2 M

′∓)/Γ(M± → all) or Br(π± → `±1 `
±
1 `
∓
2 ν`2) ≡ Γ(π± → `±1 `

±
1 `
∓
2 ν`2)/Γ(π± →

all), then becomes important. In principle, if Br(M± → `±1 `
±
2 M

′∓) or Br(π± → `±1 `
±
1 `
∓
2 ν`2)

> 10−N , then such decay modes could be detected. Further, if an experiment produces ap-
proximately equal numbers of M+ and M− mesons, then the branching ratios of experimental
significance for the decays M± → `±1 `

±
2 M

′∓ and π± → `±1 `
±
1 `
∓
2 ν`2 are:

Br(M) ≡ S+(M)

[Γ(M− → all) + Γ(M+ → all)]
≈ S+(M)

2Γ(M− → all)
, (C.1a)

ACP(M)Br(M) =
S−(M)

[Γ(M− → all) + Γ(M+ → all)]
≈ S−(M)

2Γ(M− → all)
, (C.1b)

where we use the notation of Eqs. (3.29a)-(5.47a) and (4.29a)-(4.29b) andM = π,K,D,Ds,B,BC .
Here we understand that M = π means π± → `±1 `

±
1 `
∓
2 ν`2 and M = K,D,Ds,B,Bc means

M± → `±1 `
±
2 M

′∓. We also used the fact that in the considered cases of pseudoscalar mesons
M± the total decay widths Γ(M− → all) and Γ(M+ → all) are practically equal. Br(M) repre-
sents the average of the branching ratios of M+ and M− for these decays, while ACP(M)Br(M)
is the corresponding branching ratio for the (CP-violating) difference.

Nonetheless, in experiments we must also take into account the acceptance (suppression)
factor in the detection of these decays, which appears due to the small length of the detector
in comparison to the relatively large lifetime of the (on-shell) sterile neutrinos Nj. Stated
otherwise, most of the on-shell neutrinos, produced in the decay M± → `±1 Nj, are expected to
survive long enough time to travel through the detector and decay (into `±2 M

′∓) outside the
detector.

Only when M = B or Bc, a large part of the produced neutrinos Nj can decay within the 1
meter long detector (see the arguments later on).

This effect suppresses the number of detected decays and should be taken into account. The
acceptance (suppression) factor is the probability of the on-shell neutrino N to decay inside
the detector of length L

PNj ≈
L

γNjτNjβNj
∼ L

γNjτNj
=
LΓNj
γNj

=
LΓ(MNj)

γNj
K̃j ≡ A(MNj)K̃j , (C.2)
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where γNj is the time dilation (Lorentz) factor γNj = (1− β2
Nj

)−1/2 (∼ 1-10) in the lab system.

We took into account that the speed of neutrino is βNj ∼ 1. The quantity Γ(MNj) (∝M5
Nj

) and

the factor K̃j (∝ |B`Nj |2) were defined in Eqs. (3.14) and (3.15), respectively. The quantity

A(MNj) ≡ (LΓ(MNj)/γNj) can be called ”canonical acceptance,” and depends heavily on

the neutrino mass: A ∝ M5
Nj

. In Figs. C.1 and C.2 we present the values of this canonical

acceptance as a function of the neutrino mass MN , for the choice L = 1 m (= 5.064·1015 GeV−1)
and γN = 2.
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Figure C.1: The canonical acceptance A(MN ) ≡ (LΓ(MN )/γN ) as a function of the neutrino mass MN in
the relevant on-shell range for the pion decay. In the curve, we took for the length of the detector
the value L = 1 m and for the time dilation factor the value γN = 2.

0 1 2 3 4 5 6
0.001

0.1

10

1000

105

MN HGeVL

A

Figure C.2: The canonical acceptance A(MN ) ≡ (LΓ(MN )/γN ) as a function of the neutrino mass MN . In
the curve, we took for the length of the detector the value L = 1 m and for the time dilation
factor the value γN = 2.
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The values of A for other cases of the values of L and γN are obtained directly from the
presented curve by taking into account that A ∝ L/γN . The realistic acceptance factor is then

obtained by Eq. (C.2), where K̃j ∼ |B`Nj |2 (j = 1, 2) are the heavy-light mixing factors defined
in Eq. (3.15) with coefficients N`N there of ∼ 10 according to Figs. B.1 and B.2. Combining

the results of Figs. B.1 and B.2 with Eq. (3.15), we can write rough approximations for K̃j

K̃Ma
j ≈ 1.6|BeNj |2 + 1.1|BµNj |2 + 1.1|BτNj |2 (π decays) , (C.3a)

K̃Dij ≈ 1.6|BeNj |2 + 1.1|BµNj |2 + 1.1|BτNj |2 (π decays) , (C.3b)

K̃Ma
j ≈ 15|BeNj |2 + 8|BµNj |2 + 2|BτNj |2 (K decays) , (C.3c)

K̃Ma
j ≈ 7(|BeNj |2 + |BµNj |2) + 2|BτNj |2 (D,Ds decays) , (C.3d)

K̃Ma
j ≈ 8(|BeNj |2 + |BµNj |2) + 3|BτNj |2 (B,Bc decays) . (C.3e)

The rough upper bounds for |B`N |2, for ` = e, µ, τ , are given in Table C.1 for the typical ranges
of our interest: MN around 0.13; 0.25; 1; 3 GeV – relevant for the decays of π; K; (D,Ds);
(B,Bc), respectively (see also Table C.2 for several specific values of MN).

Table C.1: Present rough upper bounds for |B`N |2 (` = e, µ, τ) for MN in the ranges around the values 0.13,
0.25, 1, 3 GeV; and the canonical acceptance factor A(MN ) (for L = 1 m and γN = 2).

MN [GeV] |BeN |2 |BµN |2 |BτN |2 A
≈ 0.13 10−8 10−6 10−4 4 · 10−3

≈ 0.25 10−8 10−7 10−4 0.11
≈ 1.0 10−7 10−7 10−2 115.
≈ 3.0 10−6 10−4 10−4 3 · 104

The present upper bounds for |BeN |2, in the mentioned range of MN , are largely determined
by the neutrinoless double beta decay experiments [49, 50, 76] (0νββ). The upper bounds for
|BµN |2 come from searches of peaks in the spectrum of µ in pion and kaon decays [51] and from
decay searches [51–56, 77, 78]. The upper bounds for |BτN |2 come from CC interactions (if τ
is produced) and from NC interactions [56–58]. In Table C.2 we present the upper bounds on
|B`N |2 for specific chosen values of MN in the mentioned interval.
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Table C.2: Present upper bounds for the squares |B`N |2 of the heavy-light mixing matrix elements, for
various specific values of MN .

MN [GeV ] |BeN |2 |BµN |2 |BτN |2

0.1 (1.5± 0.5)× 10−8 (6.0± 0.5)× 10−6 (8.0± 0.5)× 10−4

0.3 (2.5± 0.5)× 10−9 (3.0± 0.5)× 10−9 (1.5± 0.5)× 10−1

0.5 (2.0± 0.5)× 10−8 (6.5± 0.5)× 10−7 (2.5± 0.5)× 10−2

0.7 (3.5± 0.5)× 10−8 (2.5± 0.5)× 10−7 (9.0± 0.5)× 10−3

1.0 (4.5± 0.5)× 10−8 (1.5± 0.5)× 10−7 (3.0± 0.5)× 10−3

2.0 (1.0± 0.5)× 10−7 (2.5± 0.5)× 10−5 (3.0± 0.5)× 10−4

3.0 (1.5± 0.5)× 10−7 (2.5± 0.5)× 10−5 (4.5± 0.5)× 10−5

4.0 (2.5± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

5.0 (3.0± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

6.0 (3.5± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

The upper bounds have in some cases strong dependence on the precise values of MN , and
for further details we refer to the corresponding figures in Ref. [45].

The corresponding values of the canonical acceptance factor A(MN) are also included in
Table C.1.
Combining Eqs. (C.2) with (C.3) and Table C.1, we obtain for the acceptance factor PNj the
following estimates and upper bounds relevant for the π decays (MN ≈ 0.13 GeV), K decays
(MN ≈ 0.25 GeV), D and Ds decays (MN ≈ 1 GeV), and B and Bc decays (MN ≈ 3 GeV):

PNj(MN ≈ 0.13GeV) ≈ (6.4|BeNj |2 + 4.4|BµNj |2)10−3 (+4.4|BτNj |2)10−3

. 10−11 + 10−9 (+10−7) , (C.4a)

PNj(MN ≈ 0.25GeV) ≈ 1.7|BeNj |2 + 0.9|BµNj |2 (+0.2|BτNj |2)

. 10−8 + 10−7 (+10−5) , (C.4b)

PNj(MN ≈ 1GeV) ≈ 0.8 · 103|BeNj |2 + 0.8 · 103|BµNj |2 (+2 · 102|BτNj |2)

. 10−4 + 10−4 (+100) , (C.4c)

PNj(MN ≈ 3GeV) ≈ 3 · 105|BeNj |2 + 3 · 105|BµNj |2 (+1 · 105|BτNj |2)

. 100 + 100 (+100) , (C.4d)

The upper bounds for PNj in Eqs. (C.4) are written as a sum of the contributions of upper
bounds from |BeNj |2, |BµNj |2 and |BτNj |2 separately. Further, the contributions of |BτNj |2 are
included in Eqs. (C.4) optionally, in the parentheses, because the upper bounds of the mixings
|BτNj |2 are still very high and are expected to be reduced significantly in the foreseeable future.
The upper bounds which give results higher than one are replaced by one (100), because the
acceptance (decay probability) PNj can never be higher than one by definition.
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Appendix D

Delta function approximation for the
imaginary part of the propagator

product

In this Appendix we investigate the expression for the imaginary part of the propagator
product, Im(P1(D)P2(D)∗), Eq. (3.35). For convenience we introduce in this Appendix the
following simplified notations x, M2, ∆ and ξ:

x ≡ p2
N , M2 ≡M2

N1
, (D.1a)

∆ ≡ ∆M2
N ≡M2

N2
−M2

N1
, (D.1b)

ΓN1 = ξΓN , ΓN2 = (2− ξ)ΓN . (D.1c)

We note that ∆ > 0 by convention; and 0 < ξ < 2. Further, ΓN1 + ΓN2 = 2ΓN , in accordance
with the definition of ΓN Eq. (3.13). Since we always have ΓNj � MNj (the neutrinos Nj are
sterile), the relation (3.34) holds, i.e.,

ΓNjMNj

(x−M2
Nj

)2 + Γ2
Nj
M2

Nj

= πδ(x−M2
Nj

). (D.2)

We can write the right-hand side of Eq. (3.35a) for Im(P1(D)P2(D)∗) as

Im (P1(D)P2(D)∗) = R1 +R2 (D.3)

where R1 and R2 can be written, in our notation, as

R1 =
(x−M2)(2− ξ)ΓN

√
M2 + ∆

[(x−M2)2 + ξ2Γ2
NM

2] [(x−M2 −∆)2 + (2− ξ)2Γ2
N(M2 + ∆)]

(D.4a)

= η1 ×
π

∆
δ(x−M2 −∆), (D.4b)

R2 = − ξΓNM(x−M2 −∆)

[(x−M2)2 + ξ2Γ2
NM

2] [(x−M2 −∆)2 + (2− ξ)2Γ2
N(M2 + ∆)]

(D.4c)

= η2 ×
π

∆
δ(x−M2), (D.4d)

In Eqs. (D.4b) and (D.4d), the identity (D.2) was used, and we introduced two (dimensionless)
parameters ηj (j = 1, 2). We want to obtain these two parameters ηj. They can be obtained
by integrating analytically the explicit expressions (D.4a) and (D.4c) for Rj(x) over x. For
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D. Delta function approximation

example, integration of R1(x) gives∫ +∞

−∞
dx

(x−M2)(2− ξ)ΓN
√
M2 + ∆

[(x−M2)2 + ξ2Γ2
NM

2] [(x−M2 −∆)2 + (2− ξ)2Γ2
N(M2 + ∆)]

=
π∆

(∆2 + 4Γ2
NM

2
∗ )
,

(D.5)
where

M2
∗ =

1

2
M2

[
(2− ξ(2− ξ)) + ξ(2− ξ)

√
1 + ∆/M2

]
+

1

4
(2− ξ)2∆ (D.6a)

= M2

[
1 + (1− ξ/2)

∆

M2
+O

(
∆2

M4

)]
. (D.6b)

The integration in Eq. (D.5) can be evaluated in the range ]−∞,∞[, due to Dirac delta
structure in the integrand (Dirac delta functions have narrows peaks for possitive x ≈MNj).

Therefore, in the case of near degeneracy (∆ � M2) we have M2
∗ = M2. If we now use

in the integration over dx the expression (D.4b) instead, take into account M2
∗ = M2 in the

case of near degeneracy, and compare with (D.5), we obtain the following expression for the
parameter η1 by comparison with (D.5):

η1
1

∆
=

∆

(∆2 + 4Γ2
NM

2)
(∆�M2), (D.7a)

η1 =
y2

y2 + 1

(
y ≡ ∆

(2MΓN)
, ∆�M2

)
, (D.7b)

where in Eq. (D.7b) we use the usual notation in this paper y ≡ (MN2 − MN1)/ΓN =
∆/(2MΓN). Here we note that ∆ ≡ (M2

N2
− M2

N1
) = (MN2 − MN1)2MN1 in the case of

near degeneracy ∆�M2 ≡M2
N1

.
Doing the same procedure with the quantity R2, we obtain for η2 the very same result as

for η1

η1 = η2 =
y2

y2 + 1
(∆�M2). (D.8)
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Appendix E

Explicit formulas of M±→ `±1 `
±
2 M

′∓

E.1 The matrix element T (M±) for the decay of Fig. 4.1 can be
written in the form.

T (M±) = KM±

2∑
j=1

k
(±)
j MNj [Pj(D)TM±(D) + Pj(C)TM±(C)] , (E.1)

where j = 1, 2 refer to the contributions of the exchanges of the two intermediate neutrinos
Nj, and X = D,C refer to the contribution of the direct and crossed channels, respectively,

cf. Fig. 4.1. In Eq. (E.1), k
(±)
j are the heavy-light mixing factors defined in Eq. (3.7); Pj(X)

(j = 1, 2;X = D,C) are the propagator functions of Nj neutrino for the D and C channel,
Eqs. (3.6), and K± are the constants coming from the vertices

KM− = −G2
FVQuQdVquqdfMfM ′ , KM+ = (KM−)∗ , (E.2)

where fM and fM ′ are the decay constants of M± and M
′∓, and VQuQd and Vquqd are the CKM

elements for M± and M
′∓: M+ has the valence quark content QuQ̄d; M

′+ has quq̄d. The
functions TM±(D) and TM±(C) appearing in the amplitude (E.1) can be written as

TM±(D) = u`2(p2) 6pM ′ 6pM(1∓ γ5)v`1(p1) , (E.3a)

TM±(C) = u`2(p2) 6pM 6pM ′(1∓ γ5)v`1(p1) , (E.3b)

where the spinors are written in the helicity basis. Squaring and summing over the final
helicities leads to the square |T (M±)|2 of the total decay amplitude (E.1) as given in Eq. (4.5)
in conjuntion with Eqs. (3.7)-(3.5), where the quadratic expressions TM±(X)TM±(Y )∗ (X, Y =

D,C) appearing in the normalized decay widths Γ̃±(XY ∗)ij in Eq. (4.7) are

TM±(D)TM±(D)∗ = 8
[
M2

MM
2
M ′(p1 · p2)− 2M2

M(p1 · pM ′)(p2 · pM ′)− 2M2
M ′(p1 · pM)(p2 · pM)

+4(p1 · pM)(p2 · pM ′)(pM · pM ′)
]
≡ TM(D)TM(D)∗ , (E.4a)

TM±(C)TM±(C)∗ = 8
[
M2

MM
2
M ′(p1 · p2)− 2M2

M(p1 · pM ′)(p2 · pM ′)− 2M2
M ′(p1 · pM)(p2 · pM)

+4(p2 · pM)(p1 · pM ′)(pM · pM ′)
]
≡ TM(C)TM(C)∗ , (E.4b)

TM±(D)TM±(C)∗ = 16
{
M2

M(p1 · pM ′)(p2 · pM ′) +M2
M ′(p1 · pM)(p2 · pM)− 1

2
M2

MM
2
M ′(p1 · p2)

+(pM · pM ′) [−(p1 · pM)(p2 · pM ′)− (p2 · pM)(p1 · pM ′) + (pM · pM ′)(p1 · p2)]

∓i(pM · pM ′)ε(pM , p1, p2, pM ′)
}

(E.4c)

TM±(C)TM±(D)∗ = (TM±(D)TM±(C)∗)∗ = TM∓(D)TM∓(C)∗ = (TM∓(C)TM∓(D)∗)∗ , (E.4d)
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±
2 M

′∓

where in these expressions the summation over the (final) helicities of the leptons `1 and `2 is
implied, and we denoted

ε(q1, q2, q3, q4) ≡ εη1η2η3η4(q1)η1(q2)η2(q3)η3(q4)η4 , (E.5)

and εη1η2η3η4 is the totally antisymmetric Levi-Civita tensor with the sign convention ε0123 = +1.

The expressions (E.4), in conjunction with the definitions (4.7), imply for the canonical de-

cay widths Γ̃M±(XY ∗)ij of Eq. (4.7) various symmetry relations, among them that Γ̃M±(DD∗)

and Γ̃M±(CC∗) are both self-adjoint (2×2) matrices and that elements of the D-C interference

matrices Γ̃M±(CD∗) and Γ̃M±(DC∗) are related

Γ̃M(DD∗)ij =
(

Γ̃M(DD∗)ji

)∗
, Γ̃M(CC∗)ij =

(
Γ̃M(CC∗)ji

)∗
, (E.6a)

Γ̃M±(CD∗)ij =
(

Γ̃M±(DC∗)ji

)∗
. (E.6b)

When the two final leptons are the same (`1 = `2), we can use the fact that the integration
d3 over the final particles is symmetric under (p1 ↔ p2) (because M`1 = M`2), and we have
additional symmetry relations

Γ̃M(DD∗)ij = Γ̃M(CC∗)ij , (E.7a)

Γ̃M±(CD∗)ij = Γ̃M±(DC∗)ij , (E.7b)

and the (2× 2) D-C interference matrices Γ̃M±(CD∗) become self-adjoint, too.

E.2 Explicit expression for the function Q.

The expression (4.17) can be obtained by using in the integration over the phase space of three
final particles [Eqs. (4.3)-(4.4)], for the contribution of the Nj neutrino, the identity

d3

(
M(pM)→ `1(p1)`2(p2)M

′
(pM ′)

)
=

d2 (M(pM)→ `1(p1)Nj(pN)) dp2
Nd2

(
Nj(pN)→ `2(p2)M

′
(pM ′)

)
(E.8a)

d2 (M(pM)→ `2(p2)Nj(pN)) dp2
Nd2

(
Nj(pN)→ `1(p1)M

′
(pM ′)

)
, (E.8b)

where the first identity can be used for the DD∗ contribution (where pN = pM − p1) and the
second for the CC∗ contribution (where pN = pM − p2). Using the identity (3.34) in the DD∗

contribution, and the analogous identity for the CC∗ contribution, the integration over dp2
N

becomes trivial, and the d2-type of integrations are straightforward.1 The resulting expression
for Γ(DD∗)jj is then the expression Eq. (4.17) with the notations (4.19) and (4.23), where the

1 This is equivalent to the factorization approach Γ(M → `1Nj)Br(Nj → `2M
′
) valid when Nj is on-shell.

88



E.2. Explicit expression for the function Q.

function Q has the form

Q(x;x`1 , x`2 , x
′) =

{
1

2
(x− x`1)(x− x`2)(1− x− x`1)

(
1− x′

x
+
x`2
x

)
+
[
− x`1x`2(1 + x′ + 2x− x`1 − x`2)− x2

`1
(x− x′) + x2

`2
(1− x)

+x`1(1 + x)(x− x′)− x`2(1− x)(x+ x′)
]}

. (E.9)

=
1

2
[(1− x)x+ x`1(1 + 2x− x`1)]

[
x− x′ − 2x`2 −

x`2
x

(x′ − x`2)
]
(E.10)
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Appendix F

The quantum mechanics approach to
oscillation.

In this Appendix, we show that the amplitude approach to on-shell oscillations in the considered
processes, as presented in the main text of this work and following mainly the amplitude
approach of Ref. [67], is consistent with the usual (quantum mechanics) approach to neutrino
oscillation [39] (cf. also [68]) applied to these processes (within the approximations used in
such approaches).

We recall that the relevant e- and µ-flavor analogs in the considered processes are the
combinations (5.3a) of only the two almost mass-degenerate heavy neutrino eigenfields Nj

(j = 1, 2), because the other components (including the light neutrino mass eigenfields ν1,
ν2, ν3) are off-shell or are assumed off-shell in the considered processes. Following the usual
(quantum mechanics) approaches to neutrino oscillation, cf. [39] (cf. also [68]), the e and µ
“heavy” flavor analogs Nα (α = 1, 2) of the heavy neutrino mass eigenstates Nj (j = 1, 2),
cf. Eqs. (5.2), are represented as quantum mechanical states [cf. Eq. (5.3a) for the corresponding
fields]

|Nα〉 = B∗α1|N1〉+ B∗α2|N2〉, (F.1a)

|N α〉 = Bα1|N1〉+ Bα2|N2〉 (α = 1, 2), (F.1b)

where in Eq. (F.1b) we assumed that the physical neutrinos Nj are Majorana. Here we used the
notation (5.3b) for the 2×2 matrix B with normalized lines. In the wavefunction approach [39],
these wavefunctions are in the Schrödinger representation, and consequently have the following
evolution in time t:

|Nα(t)〉 =
2∑
j=1

B∗αj exp(−iEjt)|Nj〉 =
2∑

β=1

2∑
j=1

B∗αj exp(−iEjt)
(
B∗−1

)
jβ
|Nβ〉, (F.2a)

|N α(t)〉 =
2∑
j=1

Bαj exp(−iEjt)|Nj〉 =
2∑

β=1

2∑
j=1

Bαj exp(−iEjt)
(
B−1

)
jβ
|N β〉, (F.2b)

where we recall the notation (5.3b) used for the 2 × 2 matrix B, and the inverse matrix is
consequently

B−1 =
1

DetB

[
B22 −B12

−B21 B11

]
, (F.3)

and B∗−1 is the complex conjugate of this. In Eqs. (F.2) the notation Ej ≡ ENj is used for the
energy of the neutrino mass eigenstate |Nj〉, where ENj is given in Eq. (5.24). The states |Nj〉
(j = 1, 2) are orthogonal to each other

〈Nj|Nk〉 = δjk. (F.4)

Jilberto Antonio Zamora Saá 91
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We note that the 2× 2 matrix B matrix, Eq. (5.3b), although having its two lines normalized,
is in general not unitary, and therefore

〈N1|N2〉 =
∑
B1jB∗2j 6= 0, 〈N1|N 2〉 =

∑
B1jB2j 6= 0, (F.5)

i.e., the states of the “heavy” flavor analogs, |Nα〉 and/or |N β〉, are in general not mutually
orthogonal. As a consequence of Eqs. (F.4) and (5.3), these flavor analogs are normalized
states

〈N1|N1〉 = 〈N2|N2〉 = 1 = 〈N 1|N 1〉 = 〈N 2|N 2〉. (F.6)

In the LC decay B+ → µ+e−π+, Fig. 5.2, the neutrino flavor state produced in the first
(production) vertex is |N2〉, and the state disappearing at the second (decay) vertex is |N1〉,
cf. Fig. F.1. Therefore, the relevant oscillation amplitude in this decay is 〈N1|N2(t)〉.

B+ π+

|N2〉 |N1〉

µ+

e−

Figure F.1: The LC decay B+ → µ+e−π+: at the production vertex, |N1〉 state is produced; at the decay
vertex, |N2〉 state is absorbed.

Using the relations (F.2a) and (F.5)-(F.6), we obtain1 the following expression for the
relevant oscillation amplitude 〈N1|N2(t)〉:

〈N1|N2(t)〉 =
{

exp(−iEN1t)B∗21

[(
B∗−1

)
11

+
(
B∗−1

)
12

(B11B∗21 + B12B∗22)
]

+ exp(−iEN2t)B∗22

[(
B∗−1

)
21

+
(
B∗−1

)
22

(B11B∗21 + B12B∗22)
] }

(F.7a)

=
1

DetB∗
×
{

exp(−iEN1t)B∗21 [B∗22 − B∗12 (B11B∗21 + B12B∗22)]

+ exp(−iEN2t)B∗22 [−B∗21 + B∗11 (B11B∗21 + B12B∗22)]

}
(F.7b)

Transforming Eq. (F.7a) to Eq. (F.7b), we used for B∗−1 the complex conjugate of the iden-
tity (F.3). In this quantum mechanics approach, the terms in Eq. (F.7) with exp(−iENj t)
correspond to the terms exp(−ipNj · z) of the corresponding amplitude A(B+ → µ+e−π+) in
Eq. (5.39a). If the two approaches are to be consistent with each other, then the ratio of the

1 The algebra is performed in analogy with the usual quantum mechanics approach to light neutrino oscillations [39], except
that now we have in general the nonorthogonality of the two flavor states Eq. (F.5).
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.

coefficients at exp(−iEN1t) and exp(−iEN2t) in Eq. (F.7b) is equal to the ratio of the coeffi-
cients at exp(−ipN1 · z) and exp(−ipN2 · z) in Eq. (5.39a). This means that for the consistency
we need to have2

B∗22 − B∗12 (B11B∗21 + B12B∗22)

−B∗21 + B∗11 (B11B∗21 + B12B∗22)
=
B11

B12

. (F.8)

By direct cross-multipliocation, it is straightforward to check that this identity really holds. In
checking this identity, it is enough to use only the normalization of the lines of the B matrix,
Eq. (5.3b): |B11|2 + |B12|2 = 1.

In an analogous way, we can check that this quantum mechanics approach is consistent with
the amplitude approach of the main text:

• also in the LC case B− → µ−e+π−: in the explanation above (Fig. F.1), the states |N2〉
and |N1〉 get replaced by |N 2〉 and |N 1〉, cf. Eqs. (F.1).

• also in the LV case B+ → µ+e+π−: in the explanation above (Fig. F.1), the state |N1〉
gets replaced by |N 1〉, cf. Eqs. (F.1).

• also in the LV case B− → µ−e−π+: in the explanation above (Fig. F.1), the state |N2〉
gets replaced by |N 2〉, cf. Eqs. (F.1).

2Keeping in mind that, according to Eqs. (5.3), we have BeNj
= K1B1j ∝ B1j and BµNj

= K2B2j ∝ B2j .
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