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Abstract

We provide three Fortran programs which evaluate the QCD analytic (holomorphic) cou-
plings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomor-
phic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling
a(Q2) ≡ αs(Q

2)/π, in three analytic QCD models (anQCD): Fractional Analytic Pertur-
bation Theory (FAPT), Two-delta analytic QCD (2δanQCD), and Massive Perturbation
Theory (MPT). The index ν can be noninteger. The provided programs do basically the
same job as the Mathematica package anQCD.m published by us previously, Ref. [1], but
are now written in Fortran.
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Program Summary

TProgram titles: AFAPText.for, A2danQCDext.for, AMPText.for

The main programs ( AFAPText.for, A2danQCDext.for, AMPText.for) and the
tar-gzipped file containing all three programs and this text ( AanQCDextFOR.tar.gz),
available from the web page:
gcvetic.usm.cl

Computer: Any work-station or PC where Fortran 95/2003/2008 (gfortran) is
running

Operating system in which the program has been tested: Operating system Linux
(Ubuntu and Scientific Linux), Windows (in all cases using gfortran)

No. of bytes in distributed programs:
103 kB (AFAPText.for), 107 kB (A2danQCDext.for), 236 kB (AMPText.for); 250
kB (AanQCDextFOR.tar.gz)

Distribution format: tar.gz

Keywords: Analytic (holomorphic) QCD coupling, Fractional Analytic Perturbation
Theory, Two-delta analytic QCD model, Massive Perturbation Theory, Perturbative
QCD, Renormalization group evolution.

Nature of problem: Calculation of values of the running analytic couplings
Aν(Q2;Nf ) for general complex squared momenta Q2 ≡ −q2, in three analytic
QCD models, where Aν(Q2;Nf ) is the analytic (holomorphic) analog of the power
(αs(Q

2;Nf )/π)ν . Here, Aν(Q2;Nf ) is a holomorphic function in the Q2 complex
plane, with the exception of the negative semiaxis (−∞,−M2

thr), reflecting the
analiticity properties of the spacelike renormalization invariant quantities D(Q2) in
QCD. In contrast, the perturbative QCD power (αs(Q

2;Nf )/π)ν has singularities
even outside the negative semiaxis (Landau ghosts). The three considered models
are: Analytic Perturbation theory (APT); Two-delta analytic QCD (2δanQCD);
Massive Perturbation Theory (MPT). We refer to Ref. [1] for more details and
literature.

Solution method: The Fortran programs for FAPT and 2δanQCD models contain
routines and functions needed to perform two-dimensional numerical integrations
involving the spectral function, in order to evaluate Aν(Q2) couplings. In MPT
model, one-dimensional numerical integration involving A1(Q

2) is sufficient to eval-
uate any Aν(Q2) coupling.

Restrictions: For unphysical choices of the input parameters the results are mean-
ingless. When Q2 is close to the cut region of the couplings (Q2 real negative), the
calculations can take more time and can have less precision.
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Running time: For evaluation of a set of about 10 related couplings, the times vary
in the range t ∼ 101-102 s. MPT requires less time, t ∼ 1-101 s.
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1. General remarks

The included Fortran programs evaluate the holomorphic couplingsAν(Q2) in the dis-
persive approach to QCD, where we consider three analytic versions: Fractional Analytic
Perturbation Theory (FAPT) [2] (and references therein), 2δ analytic QCD (2δanQCD)
[3] (cf. also [1, 4]), and Massive Perturbation Theory (MPT) [5] (cf. also [6, 7]). These
programs are constructed for complex squared momenta Q2 ≡ −q2, in a similar way as
the previously published Mathematica package anQCD.m, Ref. [1].1 For additional de-
tails on the three analytic QCD models with a view to implementing them numerically
in Mathematica, we refer to Ref. [1].

A complication appears in Fortran, though, because in the dispersion integrals for
FAPT and 2δanQCD couplings the polylogarithm function Liν(z) for complex z appears
and it has not been implemented in Fortran yet (in Mathematica it is implemented as
PolyLog[−ν, z]). In the attached Fortran programs this function is calculated as the
following integral [14]:

Li−n−δ(z) =

(
d

d ln z

)n+1 [
z

Γ(1− δ)

∫ 1

0

dξ

1− zξ
ln−δ

(
1

ξ

)]
(n = −1, 0, 1, . . . ; 0 < δ < 1) ,

(1)
where ν = n + δ. For better stability, the numerical integration of this integral over ξ is
implemented in the complex plane along a ray in the first quadrant. This then results in
two-dimensional integration for the evaluation of FAPT and 2δanQCD couplings Aν(Q2).
This integration is performed numerically with vegas routine [15]. In this approach,
overflow and/or underflow problems appear at the edges of the unit square of integration,
which are dealt with carefully in the programs. In the evaluation of couplings Aν(Q2)
in MPT model, one-dimensional integrations are needed because the integrand involves
A1(Q

2/ξ) and no functions Liν(z).
The Fortran programs are self-contained, i.e., no additional packages are needed. The

needed explanations and instructions on the input parameters, compiling commands, and
the output form, are all given at the beginning of each Fortran program. The calculations
are more time-consuming in FAPT when the complex squared momenta Q2 are close to
the cut negative semiaxis. In all models (FAPT, 2δanQCD, MPT), the number of active
quark flavors Nf is a fixed input integer.

We wish to point out that this program, in Mathematica form [1], was already applied
without problems to the evaluation of the nonsinglet structure function F2 in deep inelastic
scattering in FAPT model [16].

1The analogous Fortran programs, but only for real values of the squared momenta Q2, were men-
tioned in Ref. [8] (and were made available on the web page: gcvetic.usm.cl). The Fortran program for
the couplings An(Q2) for integer index n and real Q2 in APT [9] and massive APT (MAPT) [10] was
provided in Ref. [11], based on the corresponding program in Maple [12]. The Mathematica program for
evaluation of the general power analogs Aν(Q2) in FAPT was provided in Ref. [13].
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2. Practical aspects of the program

2.1. Input parameters

The programs can get compiled with the simple “gfortran” command. For example,
the program A2danQCDext.for can get compiled by writing in the directory where the
program is stored: “gfortran -o A2dan A2danQCDext.for” and then executed with the
command “./A2dan”. Before compiling, however, the input parameters should be typed
into the program, at (two) places which start with the string “INPUT”. In all three
programs the following input parameters need to be specified:

1. Nf (“Nf”), the number of active quarks;

2. Nin (“Nin”) and δin (“delin”) indices, where ν = Nin+δin is the index of the coupling
Aν ; where Nin = 0, 1, 2, 3, 4; and 0 ≤ δin ≤ 1.

3. |Q2| (“AbsQ2”, in GeV2) and φ (“ArgQ2”, in radians), where Q2 = |Q2| exp(iφ) is
the (complex) squared momentum (Q2 ≡ −q2).

In addition, in the programs AFAPText.for and AMPText.for, the scale ΛNf
(“gL2MS”,

in GeV) of the underlying pQCD coupling needs to be specified.
Further, in AMPText.for, the MPT squared effective mass of the gluon m2

gl (“gM2”, in

GeV2) needs to be specified. This mass is of the order of magnitude m2
gl ∼ 1 GeV2 [5–7],

and is assumed in our program AMPText.for to be constant at all momenta (and thus
independent of Q2 and of Nf ). Instead of the input scale ΛNf

in MPT, which basically

determines the strength of the MPT coupling A(MPT)
1 (Q2) = αs(Q

2 + m2
gl; MS)/π, one

might prefer to use the value of πA1(M
2
Z) = αs(M

2
Z + m2

gl; MS). This then determines

the value of the scale ΛNf=5. The values of other scales ΛNf
(for Nf = 4, 3, 6) can then

be obtained by applying the (3-loop) quark threshold relations [17] applied within the
(analytic) MPT model

A′1 = A1 −A2
`h
6

+A3

(
`2h
36
− 19

24
`h + c̃2

)
+A4

[
− `3h

216
− 131

576
`2h +

`h
1728

(−6793 + 281(Nf − 1)) + c̃3

]
. (2)

Here, A′1 ≡ A
(MPT)
1 (µ2

Nf
;Nf − 1) and An ≡ A(MPT)

n (µ2
Nf

;Nf ), and `h = ln[µ2
Nf
/m2

q] = lnκ

where mq = mq(mq) is the MS mass of the corresponding quark entering at the threshold
squared momentum µ2

Nf
= κm2

q (κ ∼ 1). We recall that in MPT (and FAPT) we use for

the underlying pQCD coupling the 4-loop MS running coupling. In Table 1 we present
the values of the scales ΛNf

corresponding to various values of m2
gl and πA1(M

2
Z) in MPT.

A similar Table for the values of the scales ΛNf
was given for FAPT in Ref. [1] (Table 1

there).
In A2danQCD.for program for 2δanQCD model, the scheme parameter c2 (= β2/β0)

was set equal to the central preferred value c2 = −4.9 (cf. Table 2 of Ref. [1]).
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Table 1: The scales ΛNf
, written in MeV, in MPT analytic model, for various values ofm2

gl and πA(MPT)
1 =

αs(M2
Z + m2

gl; MS). The threshold parameter κ = 2 was taken; in parentheses, the results with the
threshold parameter κ = 1 are given.

m2
gl [GeV2] πA(MPT)

1 (M2
Z) Λ6 Λ5 Λ4 Λ3

0.5 0.118 88.3 (88.4) 208.6 (208.6) 291.5 (291.0) 339.8 (338.4)
1.0 0.118 88.3 (88.4) 208.6 (208.6) 291.8 (291.3) 343.1 (342.1)
1.5 0.118 88.3 (88.4) 208.7 (208.7) 292.1 (291.7) 346.5 (345.4)
0.5 0.120 99.8 (99.8) 232.9 (232.9) 321.8 (321.2) 371.1 (369.5)
1.0 0.120 99.8 (99.8) 233.0 (233.0) 322.1 (321.6) 374.8 (373.6)
1.5 0.120 99.8 (99.9) 233.0 (233.0) 322.5 (321.9) 378.5 (377.2)
0.5 0.122 112.3 (112.4) 259.1 (259.1) 354.0 (353.3) 404.2 (402.1)
1.0 0.122 112.3 (112.4) 259.1 (259.1) 354.4 (353.8) 408.0 (406.7)
1.5 0.122 112.3 (112.4) 259.1 (259.1) 354.8 (354.2) 412.1 (410.6)

2.2. Output

After the execution of the program, the results of each program are written in the
output file AFAPText.dat (or: A2danQCDext.dat, AMPText.dat). If the input index is
ν = N + δ (N = 0, 1, 2, 3 or 4; and 0 ≤ δ ≤ 1), the output will consist of the following
couplings:

ÃN+δ(Q
2), ÃN+1+δ(Q

2), . . . , Ã4+δ(Q
2), (3a)

AN+δ(Q
2)(NNLO), AN+δ(Q

2)(NN+1LO), . . . ,AN+δ(Q
2)(N4LO). (3b)

Here we recall that Ãν(Q2) are the logarithmic derivatives analytically extended to non-
integer index n 7→ ν, where for integer n these derivatives are

Ãn(Q2) ≡ (−1)n−1

βn−1
0 (n− 1)!

(
∂

∂ lnQ2

)n−1

A1(Q
2) , (n = 1, 2, . . .) . (4)

The couplings Ãν(Q2) are analytic (holomorphic) in Q2, and perturbatively we have

Ãν ∼ (αs(Q
2)/π)ν . Further, the couplings Aν(Q2) are the analytic (holomorphic) analogs

of the powers (αs(Q
2)/π)ν , and they are linear combination of the couplings Ãν+K(Q2)

(K = 0, 1, . . .). For example, AN+δ(Q
2) at NN+MLO precision (N is integer; 0 ≤ δ ≤ 1)

is the following linear combination:

AN+δ(Q
2) = ÃN+δ(Q

2) +
M∑
m=1

k̃m(N + δ)ÃN+m+δ(Q
2). (5)

The expressions for the general coefficients k̃m(N + δ) were obtained in Ref. [18]. These
coefficients involve the Euler Ψ function Ψ(ν) = (d/dν)Γ(ν) and its derivatives Ψ(m)(ν).
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In Fortran, Ψ(ν) and Ψ(m)(ν) are calculated by the routine [19] which is used in our
Fortran programs.

Here we provide, for illustration, an explicit example of output for the program AMP-
Text.for. Let us take the case where the input parameters are: m2

gl = 0.7 GeV2, Nf = 3,

Λ
2

Nf
= 0.1 GeV2; and Nin = 0, δin = 0.7, |Q2| = 0.8 GeV2, φ = 1.1. These data are typed

into the program at two places, each of those places starting with a commented string
’INPUT’. In the program, the quantities m2

gl, Nf and ΛNf
are the symbols ’gM2’, ’Nf’

and ’gL2’, respectively; and the parameters N = Nin, δ = δin, |Q2| and φ are the symbols
’Nin’, ’deltain’, ’AbsQ2’ and ’ArgQ2’, respectively. The program is then compiled and
executed as described in the previous Subsection. The output is generated in the new file
AMPText.dat, which has then the following output:

Nf= 3 MPT(Nf)=mQCD(Nf):

Lambda^2(MSbar,Nf)=0.100000E+00 GeV^2 M^2_{gluon}=0.700000E+00 GeV^2

ziMIN=0.200000E+00 ziMAX=0.100000E+01

N= 0 del= 0.7000

Abs[Q2]=0.800000E+00 GeV^2 Arg[Q2]=0.110000E+01 radians

A_{N+del}(Q2)(N0LO): Re=0.227612E+00 Im=-.426739E-01

A_{N+del}(Q2)(N1LO): Re=0.234727E+00 Im=-.436878E-01

A_{N+del}(Q2)(N2LO) Re=0.234647E+00 Im=-.437757E-01

A_{N+del}(Q2)(N3LO) Re=0.234425E+00 Im=-.435684E-01

A_{N+del}(Q2)(N4LO): Re=0.235215E+00 Im=-.432293E-01

(tilde A)_{N+del}(Q2): Re=0.227611E+00 Im=-.426715E-01

(tilde A)_{del}(Q2): Re=0.227612E+00 Im=-.426739E-01

(tilde A)_{1+del}(Q2): Re=0.266876E-01 Im=-.380292E-02

(tilde A)_{2+del}(Q2): Re=0.145413E-02 Im=0.160013E-02

(tilde A)_{3+del}(Q2): Re=-.342313E-03 Im=0.319822E-03

(tilde A)_{4+del}(Q2): Re=-.819474E-04 Im=-.351718E-04

A_{N+del}(Q2)=MPT analog of (alpha_s(Q2)/Pi)^(N+del)

In the above text, ’ziMIN’ and ’ziMAX’ are the boundaries in the vegas integration
assigned automatically by the program. Further, the (complex) values of ÃK+δ(Q

2) for
K = 0, 1, 2, 3, 4 are given, as well as the complex values of AN+δ(Q

2)=A0.7(Q
2) at N0LO,

N1LO, . . ., N4LO [cf. also Eq. (5)].
On the other hand, if Q2 > 0, we write in the program ’ArgQ2=0’ (not: ’ArgQ2=0.d0’

or other similar forms). In that case, the output couplings will be real.
In the other two programs (A2danQCDext.for, AFAPText.for), the procedure and the
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output is completely analogous.
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[8] C. Ayala and G. Cvetič, Mathematica and Fortran programs for various analytic
QCD couplings, J. Phys. Conf. Ser. 608 (2015) 1, 012064. arXiv:1411.1581 [hep-ph].

7



[9] D. V. Shirkov, I. L. Solovtsov, Analytic QCD running coupling with finite IR
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